Investigation on the CdS-incorporated decorated TiO2 nanoporous arrays as a photoanode for cathodic protection of 304 SS in a 0.5 M NaCl solution
Main Article Content
Abstract
A CdS-incorporated TiO2 nanoporous material was fabricated using an anodic oxidation method combined with a chemical bath deposition technique. The three steps of anodization were completed to grow the anodic TiO2 nanoporous arrays (TNPs) on a titanium sheet in an ethylene glycol electrolyte containing 0.38wt% NH4F with the addition of 1.79 wt% H2O under an applied potential of 40 V. The CdS-decorated TiO2 nanoporous arrays (CdS/TNPs) were prepared using five dipping cycles of CdS deposition on the TNPs sample, which was calcined at 600°C in air for 3 h at a heating rate of 5 °C min-1. The structure and composition of the as-prepared TNPs and CdS/TNPs were characterized using field emission scanning electron microscopy, X-ray diffraction and energy dispersive X-ray spectroscopy. The photoelectrochemical performance of the TNPs and CdS/TNPs electrode in a 0.5 M NaCl solution was evaluated through the electrochemical measurements under illumination and dark conditions. Decoration of CdS onto the TiO2 nanoporous array gave a higher transient photocurrent indicating a higher separation efficiency of the photogenerated electron-hole pairs and facile transport of these electrons to the metal substrate. Compared to a bare TiO2 nanoporous array, the CdS/TNPs photoanode exhibited more effective photocathodic protection properties for 304 stainless steel (304SS) under visible light illumination, with a photopotential of -412 mV versus silver-silver chloride electrode (SSE). This indicates that CdS has an enhanced effect on the photogenerated cathodic protection of TiO2 nanoporous array for 304SS.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Li H, Wang X, Liu Y, Hou B. Ag and SnO2 co-sensitized TiO2 photoanodes for protection of 304SS under visible light. Corrosion Sci. 2014;82:145-53.
Pan C, Liu L, Li Y, Zhang B, Wang F. The electrochemical corrosion behavior of nanocrystalline 304 stainless steel prepared by magnetron sputtering. J Electrochem Soc. 2012;159(11):C453-60.
Fu T, Zhou ZF, Zhou YM, Zhu XD, Zeng QF, Wang CP, et al. Mechanical properties of DLC coating sputter deposited on surface nanocrystallized 304 stainless steel. Surf Coating Tech. 2012;207:555-64.
Li H, Bai X, Ling Y, Li J, Zhang D, Wang J. Fabrication of titania nanotubes as cathode protection for stainless steel. Electrochem Solid-State Lett. 2006;9(5):B28-31.
Lei CX, Zhou H, Wang C, Feng ZD. Self-assembly of ordered mesoporous TiO2 thin films as photoanodes for cathodic protection of stainless steel. Electrochim Acta. 2013;87:245-9.
Li J, Lin CJ, Lin CG. A photoelectrochemical study of highly ordered TiO2 nanotube arrays as the photoanodes for cathodic protection of 304 stainless steel. J Electrochem Soc. 2011;158(3):C55-62.
Ali G, Chen C, Yoo SH, Kum JM, Cho SO. Fabrication of complete titania nanoporous structures via electrochemical anodization of Ti. Nanoscale research letters. 2011;6(1):1-10.
Khomsab N. Effect of Non-Metal Doping on the visible light photocatalytic activity of titanium dioxide. Ladkrabang engineering journal. 2013;30(2):19-24. [In Thai].
Zhu YF, Xu L, Hu J, Zhang J, Du RG, Lin CJ. Fabrication of heterostructured SrTiO3/TiO2 nanotube array films and their use in photocathodic protection of stainless steel. Electrochim Acta. 2014;121:361-8.
Park H, Bak A, Jeon TH, Kim S, Choi W. Photo-chargeable and dischargeable TiO2 and WO3 heterojunction electrodes. Appl Catal B Environ. 2012;115:74-80.
Zhou MJ, Zeng ZO, Zhong L. Energy storage ability and anti-corrosion protection properties of TiO2–SnO2 system. Materials and corrosion. 2010;61(4):324-7.
Zhang X, Tang Y, Li Y, Wang Y, Liu X, Liu C, et al. Reduced graphene oxide and PbS nanoparticles co-modified TiO2 nanotube arrays as a recyclable and stable photocatalyst for efficient degradation of pentachlorophenol. Appl Catal Gen. 2013;457:78-84.
Li J, Lin CJ, Li JT, Lin ZQ. A photoelectrochemical study of CdS modified TiO2 nanotube arrays as photoanodes for cathodic protection of stainless steel. Thin Solid Films. 2011;519(16):5494-502.
Jiang B, Yang X, Li X, Zhang D, Zhu J, Li G. Core-shell structure CdS/TiO2 for enhanced visible-light-driven photocatalytic organic pollutants degradation. J Sol-Gel Sci Technol. 2013;66(3):504-11.
Li W, Cui X, Wang P, Shao Y, Li D, Teng F. Enhanced photosensitized degradation of rhodamine B on CdS/TiO2 nanocomposites under visible light irradiation. Mater Res Bull. 2013;48(9):3025-31.
Li H, Wang X, Zhang L, Hou B. Preparation and photocathodic protection performance of CdSe/reduced graphene oxide/TiO2 composite. Corrosion Sci. 2015;94:342-9.
Wang Q, Yang X, Chi L, Cui M. Photoelectrochemical performance of CdTe sensitized TiO2 nanotube array photoelectrodes. Electrochim Acta. 2013;91:330-6.
Zhang J, Yang J, Liu M, Li G, Li W, Gao S, et al. Fabrication of CdTe quantum dots sensitized TiO2 nanorod-array-film photoanodes via the route of electrochemical atomic layer deposition. J Electrochem Soc. 2014;161(1):D55-8.
Lin ZQ, Lai YK, Hu RG, Li J, Du RG, Lin CJ. A highly efficient ZnS/CdS/TiO2 photoelectrode for photogenerated cathodic protection of metals. Electrochim Acta. 2010;55(28):8717-23.
Bessekhouad Y, Chaoui N, Trzpit M, Ghazzal N, Robert D, Weber JV. UV–vis versus visible degradation of Acid Orange II in a coupled CdS/TiO2 semiconductors suspension. J Photochem Photobiol Chem. 2006;183(1):218-24.
Peng T, Yang H, Dai K, Pu X, Hirao K. Fabrication and characterization of CdS nanotube arrays in porous anodic aluminum oxide templates. Chem Phys Lett. 2003;379(5):432-6.
Wang C, Sun L, Yun H, Li J, Lai Y, Lin C. Sonoelectrochemical synthesis of highly photoelectrochemically active TiO2 nanotubes by incorporating CdS nanoparticles. Nanotechnology. 2009;20(29):1-6.
Zhang J, Du RG, Lin ZQ, Zhu YF, Guo Y, Qi HQ, et al. Highly efficient CdSe/CdS co-sensitized TiO2 nanotube films for photocathodic protection of stainless steel. Electrochim Acta. 2012;83:59-64.
Mallika T, Chaiyaput K. DSSCs fabrication using nano – structured titania as photoanode. Appl Mech Mater. 2015;781:184-8
Mallika T, Chaiyaput K. Structural comparison of anodic nanoporous-titania fabricated from single-step and three-step of anodization using two paralleled-electrodes anodizing cell. KKU Eng J. 2015;43(1):13-20.