Enhanced visual insights and diagnosis of interstitial lung diseases via Mufinet-DCGAN framework

Main Article Content

Jayalakshmi Ramachandran Nair
Sumathy Pichai Pillai
Rajkumar Narayanan

Abstract

Accurate identification and classification of medical images are pivotal in recent medical diagnostics. Despite considerable advancements in deep learning, current methodologies face challenges in capturing nuanced details, particularly from the perspective of interstitial lung diseases (ILDs). Moreover, there is a prominent gap in the investigation of integrating sophisticated image enhancement techniques, such as contrast-limited adaptive histogram equalization (CLAHE), and classification strategies leveraging convolutional neural networks (CNNs). This study proposes a novel methodology that synergistically combines the MufiNet-DCGAN approach to enhance image resolution and refine ILD classification. Through rigorous experimentation, our proposed method achieves commendable accuracy (98.75%), precision (98.01%), recall (98.63%), and F1 score (97.99%). These results underscore the potential of the proposed approach to advance medical diagnostics by furnishing robust tools for precise disease detection.

Article Details

How to Cite
Nair, J. R. ., Pillai, S. P. ., & Narayanan, R. . (2025). Enhanced visual insights and diagnosis of interstitial lung diseases via Mufinet-DCGAN framework. Engineering and Applied Science Research, 52(4), 352–363. retrieved from https://ph01.tci-thaijo.org/index.php/easr/article/view/258310
Section
ORIGINAL RESEARCH

References

Li Q, Qu H, Liu Z, Zhou N, Sun W, Sigg S. AF-DCGAN: Amplitude feature deep convolutional GAN for fingerprint construction in indoor localization systems. IEEE Trans Emerg Top Comput Intell. 2021;5(3):468-80.

Plenge E, Poot DHJ, Bernsen MR, Kotek G, Houston G, Wielopolski P, et al. Super‐resolution methods in MRI: Can they improve the trade‐off between resolution, signal‐to‐noise ratio, and acquisition time?. Magn Reson Med. 2012;68(6):1983-93.

Guo K, He Y, Kui X, Sehdev P, Chi T, Zhang R, et al. LLTO: Towards efficient lesion localization based on template occlusion strategy in intelligent diagnosis. Pattern Recognit Lett. 2018;116:225-32.

Tanno R, Worrall DE, Ghosh A, Kaden E, Sotiropoulos SN, Criminisi A, et al. Bayesian image quality transfer with CNNs: exploring uncertainty in dMRI super-resolution. In: Descoteaux M, Maier-Hein L, Franz A, Jannin P, Collins D, Duchesne S, editors. Medical Image Computing and Computer Assisted Intervention − MICCAI 2017. Lecture Notes in Computer Science. Cham: Springer; 2017. p. 611-9.

Xiang Q, Peng L, Pang X. Image DAEs based on residual entropy maximum. IET Image Process. 2020;14(6):1164-9.

Kaji S, Kida S. Overview of image-to-image translation by use of deep neural networks: denoising, super-resolution, modality conversion, and reconstruction in medical imaging. Radiol Phys Technol. 2019;12(3):235-48.

Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by reducing internal covariate shift [Internet]. arXiv [Preprint]. 2015 [cited 2024 Sep 3]. Available from: https://arxiv.org/abs/1502.03167.

Li Y, Sixou B, Peyrin F. A review of the deep learning methods for medical images super resolution problems. IRBM. 2021;42(2):120-33.

Zareapoor M, Emre Celebi M, Yang J. Diverse adversarial network for image super-resolution. Signal Process Image Commun. 2019;74:191-200.

Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, et al. Generative Adversarial Networks [Internet]. arXiv [Preprint]. 2014 [cited 2024 Sep 3]. Available from: https://arxiv.org/abs/1406.2661.

Xu K, Cao J, Xia K, Yang H, Zhu J, Wu C. Multichannel residual conditional GAN-leveraged abdominal pseudo-CT generation via Dixon MR images. IEEE Access. 2019;7:163823-30.

Kim DW, Chung JR, Jung SW. GRDN: Grouped residual dense network for real image denoising and GAN-based real-world noise modeling [Internet]. arXiv [Preprint]. 2019 [cited 2024 Sep 3]. Available from: https://arxiv.org/abs/1905.11172.

Abe K, Iwana BK, Holmér VG, Uchida S. Font creation using class discriminative deep convolutional generative adversarial networks. Proceedings of the 4th Asian Conference on Pattern Recognition (ACPR); 2017 Nov 26-29; Nanjing, China. Piscataway: IEEE; 2017. p. 238-43.

Radford A, Metz L, Chintala S. Unsupervised representation learning with deep convolutional generative adversarial networks [Internet]. arXiv [Preprint]. 2015 [cited 2024 Sep 3]. Available from: http://arxiv.org/abs/1511.06434.

Cao Y, Jia L, Chen YX, Lin N, Yang C, Zhang B. Recent advances of generative adversarial networks in computer vision. IEEE Access. 2019;7:14985-5006.

Dong C, Loy CC, He K, Tang X. Image super-resolution using deep convolutional networks. IEEE Trans Pattern Anal Mach Intell. 2016;38(2):295-307.

Dong C, Loy CC, Tang X. Accelerating the super-resolution convolutional neural network. In: Leibe B, Matas J, Sebe N, Welling M, editors. Computer Vision–ECCV 2016. Lecture Notes in Computer Science. Cham: Springer; 2016. p. 391-407.

Kim J, Lee JK, Lee KM. Accurate image super-resolution using very deep convolutional networks. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2016 Jun 27-30; Las Vegas, USA. Piscataway: IEEE; 2016. p. 1646-54.

Kim J, Lee JK, Lee KM. Deeply-recursive convolutional network for image super-resolution. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2016 Jun 27-30; Las Vegas, USA. Piscataway: IEEE; 2016. p. 1637-45.

Hwang HJ, Kim HJ, Seo JB, Ye JC, Oh G, Lee SM, et al. Generative adversarial network-based image conversion among different computed tomography protocols and vendors: effects on accuracy and variability in quantifying regional disease patterns of interstitial lung disease. Korean J Radiol. 2023;24(8):807-20.

Shamrat FMJM, Azam S, Karim A, Ahmed K, Bui FM, De Boer F. High-precision multiclass classification of lung disease through customized MobileNetV2 from chest X-ray images. Comput Biol Med. 2023;155:106646.

Pawar SP, Talbar SN. Two-stage hybrid approach of deep learning networks for interstitial lung disease classification. Biomed Res Int. 2022;2022:7340902.

Teramoto A, Tsukamoto T, Michiba A, Kiriyama Y, Sakurai E, Imaizumi K, et al. Automated classification of idiopathic pulmonary fibrosis in pathological images using convolutional neural network and generative adversarial networks. Diagnostics (Basel). 2022;12(12):3195.

David SI, Bashir SA, Mohammed AD. A concept-based review on generative adversarial network for generating super-resolution medical image using SWOT analysis. The 5th Information Technology for Education and Development (ITED); 2022 Nov 1-3; Abuja, Nigeria. Piscataway: IEEE; 2022. p. 1-6.

Chao HL, Wu Y, Siana L, Chen YM. Generating high-resolution CT slices from two image series using deep-learning-based resolution enhancement methods. Diagnostics. 2022;12(11):2725.

Ma J, Song Y, Tian X, Hua Y, Zhang R, Wu J. Survey on deep learning for pulmonary medical imaging. Front Med. 2019;14(4):450-69.

Wang Z, Hall J, Haddad RJ. Improving pneumonia diagnosis accuracy via systematic convolutional neural network-based image enhancement. SoutheastCon 2021; 2021 Mar 10-13; Atlanta, USA. Piscataway: IEEE; 2021. p. 1-6.

Gu Y, Zeng Z, Chen H, Wei J, Zhang Y, Chen B, et al. MedSRGAN: medical images super-resolution using generative adversarial networks. Multimed Tools Appl. 2020;79(29-30):21815-40.

Kim S, Qu L, Lian C, Pan Y, Hu D, Xia B, et al. High-resolution breast MRI reconstruction using a deep convolutional generative adversarial network. J Magn Reson Imaging. 2020;52(6):1852-8.

Deepak S, Ameer PM. MSG-GAN based synthesis of brain MRI with meningioma for data augmentation. 2020 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT); 2020 Jul 2-4; Bangalore, India. Piscataway: IEEE; 2020. p. 1-6.

Baur C, Albarqouni S, Navab N. MelanoGANs: high-resolution skin lesion synthesis with GANs [Internet]. arXiv [Preprint]. 2018 [cited 2024 Sep 3]. Available from: https://arxiv.org/abs/1804.04338.

Han C, Hayashi H, Rundo L, Araki R, Shimoda W, Muramatsu S. GAN-based synthetic brain MR image generation. 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018); 2018 Apr 4-7; Washington, USA. Piscataway: IEEE; 2018. p. 734-8.

Chen Z, Tong Y. Face super-resolution through Wasserstein GANS [Internet]. arXiv [Preprint]. 2017. [cited 2024 Sep 3]. Available from: https://arxiv.org/abs/1705.02438.

Al-Mekhlafi H, Liu S. Single image super-resolution: a comprehensive review and recent insight. Front Comput Sci. 2023;18(1):181702.

Wang C, Wang Z, Xi W, Yang Z, Bai G, Wang R. MufiNet: multiscale fusion residual networks for medical image segmentation. International Joint Conference on Neural Networks (IJCNN); 2020 Jul 19-24; Glasgow, UK. Piscataway: IEEE; 2020. p. 1-7.

Exarchos KP, Gkrepi G, Κostikas Κ, Gogali A. Recent advances of artificial intelligence applications in interstitial lung diseases. Diagnostics (Basel). 2023;13(13):2303.