Europium-doped soda lime borosilicate glass from agricultural wastes: Physical, structural, and optical properties
Main Article Content
Abstract
Wheat husks and eggshells, while often regarded as waste, are available in millions of tons. Despite their status as by-products, these materials possess significant potential for various applications. Thus, this study explores the possibility of agricultural waste as a source of bio-silicate materials for glass production. Bio-silicate was extracted from leached wheat husks, and lime was obtained from eggshells. Europium-doped soda-lime borosilicate glasses were fabricated using the melt-quenching method having a chemical composition of 30Na2O-(40-x)B2O3-20SiO2-10CaO-xEu2O3 wherein x varied from 0.01 to 0.05 mol%. Chemical oxide compositions of wheat husk ash (88.64% SiO₂) and calcined eggshell (91.30% CaO) were determined using X-ray fluorescence (XRF). Functional groups were confirmed by Fourier transform infrared (FTIR) spectroscopy. It was confirmed by X-ray diffraction (XRD) that the glasses were amorphous. The glasses exhibited 2.61 to 3.03 g/cm³ densities and molar volumes of 10.91 to 14.37 cm³, increasing with higher europium doping levels, indicating a denser glass network. Optical features were characterised using Ultraviolet-visible (UV-Vis) spectroscopy, revealing direct band gaps ranging from 3.55 to 4.90 eV and indirect band gaps from 0.40 to 1.99 eV. Glasses doped with 0.05 mol fraction Eu₃⁺ showed the highest density, molar volume, and Urbach energy, suggesting suitability for UV-absorbing materials and high-energy photonic devices. Due to their unique emission properties under various excitation wavelengths and adaptable optical band gaps, the europium-doped borosilicate glasses derived from agricultural waste are useful in optical devices such as white LEDs.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Nandyala SH, Hungerford G, Santos JD, Walsh BM, Di Silvio L, Stamboulis A. Time-resolved and excitation-emission matrix luminescence behaviour of boro-silicate glasses doped with Eu3+ ions for red luminescent application. Mater Res Bull. 2021;140:111340.
Tayal Y, Rao AS. Orange colour emitting Sm3+ ions doped borosilicate glasses for optoelectronic device applications. Opt Mater. 2020;107:110070.
Li S, Liu H, Wu F, Chang Z, Yue Y. Effects of alkaline-earth metal oxides on structure and properties of iron phosphate glasses. J Non Cryst Solids. 2016;434:108-14.
He X, Li C, Liu J, Huang Q, Shen X, Liu T, et al. Glass forming ability, structure and properties of Cr2O3-Fe2O3 codoped MgO-Al2O3-SiO2-BO3 glasses and glass ceramics. J Non Cryst Solids. 2020;529:119779.
Anjaiah J, Laxmikanth C, Veeraiah N. Spectroscopic properties and luminescence behaviour of europium doped lithium borate glasses. Physica B Condens Matter. 2014;454:148-56.
Goh KW, Wong YH, Ramesh S, Chandran H, Krishnasamy S, Ramesh S, et al. Effect of pH on the properties of eggshell-derived hydroxyapatite bioceramic synthesized by wet chemical method assisted by microwave irradiation. Ceram Int. 2021;47(7):8879-87.
Mariselvam K, Kumar RA, Karthik S. Optical and luminescence characteristics of europium doped barium lithium fluoroborate glasses. Chem Phys. 2019;525:110379.
Miniscalco WJ. Optical and electronic properties of rare earth ions in glasses. In: Digonnet MJF, editor. Rare-Earth-Doped Fiber Lasers and Amplifiers. 2nd ed. Taylor & Francis; 2001. p. 18-130.
Luo P, Huang P, Wang J, Yao C, Zhao Y, Zhuo B, et al. Controllable synthesis of glass ceramic containing YF3:Eu3+ nonocrystals: well-preserved Eu and prolong lifetime. J Am Ceram Soc. 2020;103(5):3089-96.
Hegde V, Wagh A, Hegde H, Dwaraka Vishwanath CS, Kamath SD. Spectroscopic investigation on europium-doped heavy metal borate glasses for red luminescent application. Appl Phys A. 2017;123:302.
Zhao J, Huang L, Xiao Z, Zhao S, Xu S. Luminescence properties of europium doped borosilicate glasses. Ceram Int. 2019;45(17):23804-7.
Goodenough KM, Wall F, Merriman D. The rare earth elements: demand, global, resources and challenges for resourcing future generations. Nat Resour Res. 2018;27(2):210-6.
Bulus I, Bhaktiar H, Hussin R, Danmallam IM, Ghoshal SK. Realization of efficient red laser using europium doped new boro-telluro-dolomite glass hosts: Ag nanoparticles functionality. J Phys: Conf Ser. 2020;1484:012019.
Dwaraka Viswanath CS, Venkata Krishnaiah K, Jayasankar CK. Luminescence properties of europium-doped oxyfluorosilicate glasses for visible light devices. Opt Mater. 2018;83(3):348-55.
Kaur S, Vishwakarma AK, Deopa N, Prasad A, Jayasimhadri M, Rao AS. Spectroscopic studies of Dy3+ doped borate glasses for cool white light generation. Mater Res Bull. 2018;104:77-82.
Elkholy H, Othman H, Hager I, Ibrahim M, de Ligny D. Europium-doped tellurite glasses: the Eu2+ emission in tellurite, adjusting Eu2+ and Eu3+ emissions toward white light emission. Materials (Basel). 2019;12(24):4140.
Komatsu T, Dimitrov V, Tasheva T, Honma T. Electronic polarizability in silicate glasses by comparison of experimental and theoretical optical basicities. Int J Appl Glass Sci. 2021;12(3):424-42.
Gowda GVJ, Devaraja C, Eraiah B, Dahshan A, Nazrin SN. Structural, thermal and spectroscopic studies of Europium trioxide doped lead boro-tellurite glasses. J Alloys Compd. 2021;871:159585.
Mariselvam K, Arun Kumar R, Karthik S. Optical and luminescence characteristics of europium doped barium lithium fluoroborate glasses. Chem Phys. 2019;525:110379.
Umar SA, Halimah MK, Chan KT, Latif AA. Physical, structural and optical properties of erbium doped rice husk silicate borotellurite (Er-doped RHSBT) glasses. J Non Cryst Solids. 2017;472:31-8.
Pa FC, Chik A, Fazlul Bari M. Palm ash as an alternative source for silica production. MATEC Web Conf. 2016;78:01062.
Hamza AM, Halimah MK, Muhammad FD, Chan KT. Physical properties, ligand field and Judd-Ofelt intensity parameters of bio-silicate borotellurite glass system doped with erbium oxide. J Lumin. 2019;207:497-506.
Agbabiaka OG, Oladele IO, Akinwekomi AD, Adediran AA, Balogun AO, Olasunkanm OG, et al. Effect of calcination temperature on hydroxyapatite developed from waste poultry eggshell. Sci Afr. 2020;8:e00452.
Razali N, Musa FA, Jumadi N, Jalani AY. Production of calcium oxide from eggshell: study on calcination temperature, raw weight and contact time. RSU International Research Conference 2021; 2021 Apr 30; Pathum Thani, Thailand. Thailand: RSU; 2021. p. 624-37.
Mariselvam K, Arun Kumar R, Rajeswara Rao V. Concentration-dependence and luminescence studies of erbium-doped barium lithium fluoroborate glasses. Opt Laser Technol. 2019;118:37-43.
Khan I, Rooh G, Rajaramakrishna R, Srisittipokakun N, Kim HJ, Kirdsiri K, et al. Luminescence characteristics of Sm3+-doped lithium barium gadolinium silicate glasses for Orange LED’s. Spectrochim Acta A: Mol Biomol Spectrosc. 2019;214:14-20.
Rittisut W, Wantana N, Ruangtaweep Y, Mool-am-kha P, Rujirawat S, Manyum P, et al. The radioluminescence and photoluminescence behavior of lithium alumino borate glasses doped with Tb2O3 and Gd2O3 for green luminescence applications. Opt Mater. 2021;121:111437.
Aliyu US, Kamari HM, Geidam IG, Alade IO, Noorazlan AM, Hamza AM, et al. Spectroscopic investigations of Er2O3 doped silica borotellurite glasses. Opt Mater. 2021;114:110987.
Halimah MK, Faznny MF, Azlan MN, Sidek HAA. Optical basicity and electronic polarizability of zinc borotellurite glass doped La3+ ions. Results Phys. 2017;7:581-9.
Dimitrov V, Komatsu T. An interpretation of optical properties of oxides and oxide glasses in terms of the electronic ion polarizability and average single bond strength. J Univ Chem Technol Metallurgy. 2010;45(3):219-50.
Singh D, Singh S, Singh T, Kaur P. Samarium and gadolinium-co-doped lead borate glasses for luminescent applications. J Mater Sci: Mater Electron. 2021;32(6):6900-11.
Reddy RR, Nazeer Ahammed Y, Rama Gopal K, Raghuram DV. Optical electronegativity and refractive index of materials. Opt Mater. 1998;10(2):95-100.
Meena SL. Thermal and physical properties of Pm3+ ions doped lead lithium bismuth silicate glasses. J Pure Appl Ind Phys. 2019;9(11):72-81.
Dimitrov V, Sakka S. Linear and nonlinear optical properties of simple oxides II. J Appl Phys. 1996;79(3):1741-5.
Moustafa ES, Elkhateb F. The estimation of the oxide ion polarizability using electronegativity for B2O3-Li2O-Mo glass system. Chem Mater Sci. 2012;2(1):25-31.
Zhao X, Wang X, Lin H, Wang Z. Correlation among electronic polarizability, optical basicity and interaction parameter of Bi2O3-B2O3 glasses. Physica B Condens Matter. 2007;390(1-2):293-300.
Reddy RR, Nazeer Ahammed Y, Abdul Azeem P, Rama Gopal K, Rao TVR. Electronic polarizability and optical basicity properties of oxide glasses through average electronegativity. J Non Cryst Solids. 2001;286(3):169-80.
Moustafa ES, Elkhateb F. The estimation of the oxide ion polarizability for B2O3-Li2O-Mo glass system. Am J Appl Sci. 2012;9(3):446-9.
Shaaban KS, Abdel Wahab EA, El-Maaref AA, Abdelawwad M, Shaaban ER, Yousef ES, et al. Judd – Ofelt analysis and physical properties of erbium modified cadmium lithium gadolinium silicate glasses. J Mater Sci: Mater Electron. 2020;31:4986-96.
Tangboriboon N, Kunanuruksapong R, Sirivat A. Preparation and properties of calcium oxide from eggshells via calcination. Mater Sci-Pol. 2012;30(4):313-22.
Awogbemi O, Inambao F, Onuh EI. Modification and characterization of chicken eggshell for possible catalytic applications. Heliyon. 2020;6(10):e05283.
Witoon T. Characterization of calcium oxide derived from waste eggshell and its application as CO2 sorbent. Ceram Int. 2011;37(8):3291-8.
Ahmad W, Sethupathi S, Munusamy Y, Kanthasamy R. Valorization and calcined chicken eggshell for sulphur dioxide and hydrogen sulfide removal at low temperature. Catalysts. 2021;11(2):295.
Habte L, Shiferaw N, Mulathi D, Thenepalli T, Chilakala R, Ahn JW. Synthesis of nanocalcium oxide from waste eggshell by sol-gel method. Sustainability. 2019;11(11):3196.
Terzioğlu P, Yücel S, Kuş Ç. Review on a novel biosilica source for production of advanced silica-based materials: wheat husk. Asia-Pac J Chem Eng. 2019;14(1):e2262.
Gouran A, Aghel B, Nasirmanesh F. Biodiesel production from waste cooking oil using wheat bran ash as a sustainable biomass. Fuel. 2021;295:120542.
Ershard M, Ali A, Mehta NS, Singh RK, Singh SK, Pyare R. Mechnaical and biological response of (CeO2+La2O3)-substituted 45S5 bioactive glasses for biomedical application. J Aust Ceram Soc. 2020;56(4):1243-52.
Zaid MHM, Sidek HAA, El-Mallawany R, Almasri KA, Matori KA. Synthesis and characterization of samarium doped calcium soda-lime-silicate glass derived wollastonite glass-ceramics. J Mater Res Technol. 2020;9(6):13153-60.
Saddeek YB, Shaaban ER, Moustafa ES, Moustafa HM. Spectroscopic properties, electronic polarizability, and optical basicity of Bi2O3-Li2O-B2O3 glasses. Physica B Condens Matter. 2008;403(13-16):2399-407.
Muniz RF, Soares VO, Montagnini GH, Medina AN, Baesso ML. Thermal, optical and structural properties of relatively depolymerized sodium calcium silicate glass and glass-ceramic containing CaF2. Ceram Int. 2021;47(17):24966-72.
Chanthima N, Kaewkhao J. Properties of erbium luminescence in barium borophosphate glasses. Mater Today: Proc. 2017;4(5):6099-104.
Acikgoz A, Ceyhan G, Aktas B, Yalcin S, Demircan G. Luminescent, structural and mechanical properties of erbium oxide doped natural obsidian glasses. J Non Cryst Solids. 2021;572:121104.
Kaur R, Khanna A, González-Barriuso M, González F, Chen B. Structural, optical and thermal properties of glass and anti-glass phases in strontium tellurite and borotellurite systems doped with europium. Mater Res Bull. 2018;106:288-95.
Abdel Wahab EA, Shaaban KS, Yousef ES. Enhancement of optical and mechanical properties of sodium silicate glasses using zirconia. Opt Quant Electron. 2020;52(10):458.
Deepa M, Doddoji R, Dwaraka Viswanath CS, Chandrasekhar AV. Optical and NIR luminescence spectral studies: Nd3+-doped borosilicate glasses. J Lumin. 2019;213:191-6.
Abou Hussein EM, Shaban SE, Rammah YS, Hamed Misbah M, Marzouk MA. Newly developed CeO2 and Gd2O3-reinforced borosilicate glasses from municipal waste ash and their optical, structural, and gamma-ray shielding properties. Sci Rep. 2024;14:13673.
Gao G, Wei J, Shen Y, Peng M, Wondraczek L. Heavily Eu2O3-doped yttria-aluminoborate glasses for red photoconversion with a high quantum yield: luminescence quenching and statistics of cluster formation. J Mater Chem C. 2014;2(41):8678-82.
Saraf R, Shivakumara C, Behera S, Nagabhushana H, Dhananjaya N. Photoluminescence, photocatalysis and Judd–Ofelt analysis of Eu3+-activated layered BiOCl phosphors. RSC Adv. 2015;5:4109-20.
Ebendorff-Heidepriem H, Ehrt D. Formation and UV absorption of cerium, europium and terbium ions in different valencies in glasses. Opt Mater. 2000;15(1):7-25.
Shaaban SM, Al-Ghamdi H, Alsaif NAM, Rammah YS, Khattari ZY, Shams MS, et al. The role of Eu3+ ions on FTIR, UV–vis spectroscopy, photoluminescence, and mechanical properties of newly fabricated borate-based glasses. J Aust Ceram Soc. 2024;60(2):543-51.
Ari J, Cavillon M, Plantevin O, Lancry M, Poumellec B. Europium spectroscopic properties impacted by femtosecond laser 3D nanostructuring in lithium niobium borosilicate glasses. Opt Mater: X. 2022;16:100198.
Zikriya M, Renuka CG, Manjunath C. Optical absorption intensity analysis using Judd-Ofelt theory and photoluminescence investigation for red-emitting Eu3+: TiO2 nanoparticles. Solid State Sci. 2020;107:106371.
Kremenovic A, Bozanic DK, Welsch AM, Jancar B, Nikolic AS, Boskovic M, et al. Effects of Eu3+ concentration on structural, optical and vibrational properties of multifunctional Ce(1−x)Eu(x)O2−delta) nanoparticles synthesized by thermolysis of 2,4-pentanedione complexes. J Nanosci Nanotechnol. 2012;12(12):8893-9.
Barde RV. Influence of CeO2 content on complex optical parameters of phosphovanadate glass system. Spectrochim Acta A: Mol Biomol Spectrosc. 2016;153:160-4.
Saadati M, Akhavan O, Fazli H. Single-layer MoS2-MoO3-x heterojunction nanosheets with simultaneous photoluminescence and co-photocatalytic features. Catalysts. 2021;11(12):1445.
Schwarting M, Siol S, Talley K, Zakutayev A, Phillips C. Automated algorithms for band gap analysis from optical absorption spectra. Mater Discov. 2017;10:43-52.
Bajaj R, Rao AS, Vijaya Prakash G. Photoluminescence down-shifting studies of thermally stable Eu3+ ions doped borosilicate glasses for visible red photonic device applications. J Non Cryst Solids. 2022;575:121184.
Azlan MN, Halimah MK, Shafinas SZ, Daud WM. Polarizability and optical basicity of Er3+ ions doped tellurite based glasses. Chalcogenide Letters. 2014;11(7):319-35.
Kesavulu CR, Kim HJ, Lee SW, Kaewkhao J, Wantana N, Kothan S, et al. Influence of Er3+ ion concentration on optical and photoluminescence properties of Er3+-doped gadolinium-calcium silica borate glasses. J Alloys Compd. 2016;683:590-8.
Nabilah Razali NA, Mustafa IS, Azman NZN, Kamari HM, Rahman AA, Rosli K, et al. The physical and optical studies of erbium doped borosilicate glass. J Phys: Conf Ser. 2018;1083:012004.
Zagrai M, Suciu RC, Rada S, Pică ME, Pruneanu S. Structural and optical properties of Eu3+ ions in lead glass for photonic applications. J Non Cryst Solids. 2021;569:120988.
Hassib MD, Kaky KM, Kumar A, Şakar E, Sayyed MI, Baki SO, et al. Boro-silicate glasses co-doped Er+3/Yb+3 for optical amplifier and gamma radiation shielding applications. Physica B Condens Matter. 2019;567:37-44.
Mhareb MHA, Hashim S, Ghoshal SK, Alajerami YSM, Saleh MA, Maqableh MMA, et al. Optical and erbium ion concentration correlation in lithium magnesium borate glass. Optik. 2015;126(23):3638-43.
Hassan MA. Effect of halides addition on the ligand field of chromium in alkali borate glasses. J Alloys Compd. 2013;574:391-7.
Kashif I, Ratep A, Adel G. Polarizability, optical basicity and optical properties of SiO2B2O3Bi2O3TeO2 glass system. Appl Phys A. 2018;124:486.