Europium-doped soda lime borosilicate glass from agricultural wastes: Physical, structural, and optical properties

Main Article Content

Serifat O. Adeleye
Adekunle A. Adeleke
Petrus Nzerem
Adebayo I. Olosho
Esther N. Anosike-Francis
https://orcid.org/0000-0003-0469-4735
Waliyi A. Adeleke
https://orcid.org/0000-0001-6740-987X
Abdulkarim M. Hamza
Prabhu Paramasivam
https://orcid.org/0000-0002-2397-0873

Abstract

Wheat husks and eggshells, while often regarded as waste, are available in millions of tons. Despite their status as by-products, these materials possess significant potential for various applications. Thus, this study explores the possibility of agricultural waste as a source of bio-silicate materials for glass production. Bio-silicate was extracted from leached wheat husks, and lime was obtained from eggshells. Europium-doped soda-lime borosilicate glasses were fabricated using the melt-quenching method having a chemical composition of 30Na2O-(40-x)B2O3-20SiO2-10CaO-xEu2O3 wherein x varied from 0.01 to 0.05 mol%. Chemical oxide compositions of wheat husk ash (88.64% SiO₂) and calcined eggshell (91.30% CaO) were determined using X-ray fluorescence (XRF). Functional groups were confirmed by Fourier transform infrared (FTIR) spectroscopy. It was confirmed by X-ray diffraction (XRD) that the glasses were amorphous. The glasses exhibited 2.61 to 3.03 g/cm³ densities and molar volumes of 10.91 to 14.37 cm³, increasing with higher europium doping levels, indicating a denser glass network. Optical features were characterised using Ultraviolet-visible (UV-Vis) spectroscopy, revealing direct band gaps ranging from 3.55 to 4.90 eV and indirect band gaps from 0.40 to 1.99 eV. Glasses doped with 0.05 mol fraction Eu₃⁺ showed the highest density, molar volume, and Urbach energy, suggesting suitability for UV-absorbing materials and high-energy photonic devices. Due to their unique emission properties under various excitation wavelengths and adaptable optical band gaps, the europium-doped borosilicate glasses derived from agricultural waste are useful in optical devices such as white LEDs.

Article Details

How to Cite
Adeleye, S. O. ., Adeleke, A. A., Nzerem, P., Olosho, A. I. ., Anosike-Francis, E. N. ., Adeleke, W. A. ., Hamza, A. M. ., & Paramasivam, P. . (2025). Europium-doped soda lime borosilicate glass from agricultural wastes: Physical, structural, and optical properties. Engineering and Applied Science Research, 52(2), 174–187. retrieved from https://ph01.tci-thaijo.org/index.php/easr/article/view/257904
Section
ORIGINAL RESEARCH

References

Nandyala SH, Hungerford G, Santos JD, Walsh BM, Di Silvio L, Stamboulis A. Time-resolved and excitation-emission matrix luminescence behaviour of boro-silicate glasses doped with Eu3+ ions for red luminescent application. Mater Res Bull. 2021;140:111340.

Tayal Y, Rao AS. Orange colour emitting Sm3+ ions doped borosilicate glasses for optoelectronic device applications. Opt Mater. 2020;107:110070.

Li S, Liu H, Wu F, Chang Z, Yue Y. Effects of alkaline-earth metal oxides on structure and properties of iron phosphate glasses. J Non Cryst Solids. 2016;434:108-14.

He X, Li C, Liu J, Huang Q, Shen X, Liu T, et al. Glass forming ability, structure and properties of Cr2O3-Fe2O3 codoped MgO-Al2O3-SiO2-BO3 glasses and glass ceramics. J Non Cryst Solids. 2020;529:119779.

Anjaiah J, Laxmikanth C, Veeraiah N. Spectroscopic properties and luminescence behaviour of europium doped lithium borate glasses. Physica B Condens Matter. 2014;454:148-56.

Goh KW, Wong YH, Ramesh S, Chandran H, Krishnasamy S, Ramesh S, et al. Effect of pH on the properties of eggshell-derived hydroxyapatite bioceramic synthesized by wet chemical method assisted by microwave irradiation. Ceram Int. 2021;47(7):8879-87.

Mariselvam K, Kumar RA, Karthik S. Optical and luminescence characteristics of europium doped barium lithium fluoroborate glasses. Chem Phys. 2019;525:110379.

Miniscalco WJ. Optical and electronic properties of rare earth ions in glasses. In: Digonnet MJF, editor. Rare-Earth-Doped Fiber Lasers and Amplifiers. 2nd ed. Taylor & Francis; 2001. p. 18-130.

Luo P, Huang P, Wang J, Yao C, Zhao Y, Zhuo B, et al. Controllable synthesis of glass ceramic containing YF3:Eu3+ nonocrystals: well-preserved Eu and prolong lifetime. J Am Ceram Soc. 2020;103(5):3089-96.

Hegde V, Wagh A, Hegde H, Dwaraka Vishwanath CS, Kamath SD. Spectroscopic investigation on europium-doped heavy metal borate glasses for red luminescent application. Appl Phys A. 2017;123:302.

Zhao J, Huang L, Xiao Z, Zhao S, Xu S. Luminescence properties of europium doped borosilicate glasses. Ceram Int. 2019;45(17):23804-7.

Goodenough KM, Wall F, Merriman D. The rare earth elements: demand, global, resources and challenges for resourcing future generations. Nat Resour Res. 2018;27(2):210-6.

Bulus I, Bhaktiar H, Hussin R, Danmallam IM, Ghoshal SK. Realization of efficient red laser using europium doped new boro-telluro-dolomite glass hosts: Ag nanoparticles functionality. J Phys: Conf Ser. 2020;1484:012019.

Dwaraka Viswanath CS, Venkata Krishnaiah K, Jayasankar CK. Luminescence properties of europium-doped oxyfluorosilicate glasses for visible light devices. Opt Mater. 2018;83(3):348-55.

Kaur S, Vishwakarma AK, Deopa N, Prasad A, Jayasimhadri M, Rao AS. Spectroscopic studies of Dy3+ doped borate glasses for cool white light generation. Mater Res Bull. 2018;104:77-82.

Elkholy H, Othman H, Hager I, Ibrahim M, de Ligny D. Europium-doped tellurite glasses: the Eu2+ emission in tellurite, adjusting Eu2+ and Eu3+ emissions toward white light emission. Materials (Basel). 2019;12(24):4140.

Komatsu T, Dimitrov V, Tasheva T, Honma T. Electronic polarizability in silicate glasses by comparison of experimental and theoretical optical basicities. Int J Appl Glass Sci. 2021;12(3):424-42.

Gowda GVJ, Devaraja C, Eraiah B, Dahshan A, Nazrin SN. Structural, thermal and spectroscopic studies of Europium trioxide doped lead boro-tellurite glasses. J Alloys Compd. 2021;871:159585.

Mariselvam K, Arun Kumar R, Karthik S. Optical and luminescence characteristics of europium doped barium lithium fluoroborate glasses. Chem Phys. 2019;525:110379.

Umar SA, Halimah MK, Chan KT, Latif AA. Physical, structural and optical properties of erbium doped rice husk silicate borotellurite (Er-doped RHSBT) glasses. J Non Cryst Solids. 2017;472:31-8.

Pa FC, Chik A, Fazlul Bari M. Palm ash as an alternative source for silica production. MATEC Web Conf. 2016;78:01062.

Hamza AM, Halimah MK, Muhammad FD, Chan KT. Physical properties, ligand field and Judd-Ofelt intensity parameters of bio-silicate borotellurite glass system doped with erbium oxide. J Lumin. 2019;207:497-506.

Agbabiaka OG, Oladele IO, Akinwekomi AD, Adediran AA, Balogun AO, Olasunkanm OG, et al. Effect of calcination temperature on hydroxyapatite developed from waste poultry eggshell. Sci Afr. 2020;8:e00452.

Razali N, Musa FA, Jumadi N, Jalani AY. Production of calcium oxide from eggshell: study on calcination temperature, raw weight and contact time. RSU International Research Conference 2021; 2021 Apr 30; Pathum Thani, Thailand. Thailand: RSU; 2021. p. 624-37.

Mariselvam K, Arun Kumar R, Rajeswara Rao V. Concentration-dependence and luminescence studies of erbium-doped barium lithium fluoroborate glasses. Opt Laser Technol. 2019;118:37-43.

Khan I, Rooh G, Rajaramakrishna R, Srisittipokakun N, Kim HJ, Kirdsiri K, et al. Luminescence characteristics of Sm3+-doped lithium barium gadolinium silicate glasses for Orange LED’s. Spectrochim Acta A: Mol Biomol Spectrosc. 2019;214:14-20.

Rittisut W, Wantana N, Ruangtaweep Y, Mool-am-kha P, Rujirawat S, Manyum P, et al. The radioluminescence and photoluminescence behavior of lithium alumino borate glasses doped with Tb2O3 and Gd2O3 for green luminescence applications. Opt Mater. 2021;121:111437.

Aliyu US, Kamari HM, Geidam IG, Alade IO, Noorazlan AM, Hamza AM, et al. Spectroscopic investigations of Er2O3 doped silica borotellurite glasses. Opt Mater. 2021;114:110987.

Halimah MK, Faznny MF, Azlan MN, Sidek HAA. Optical basicity and electronic polarizability of zinc borotellurite glass doped La3+ ions. Results Phys. 2017;7:581-9.

Dimitrov V, Komatsu T. An interpretation of optical properties of oxides and oxide glasses in terms of the electronic ion polarizability and average single bond strength. J Univ Chem Technol Metallurgy. 2010;45(3):219-50.

Singh D, Singh S, Singh T, Kaur P. Samarium and gadolinium-co-doped lead borate glasses for luminescent applications. J Mater Sci: Mater Electron. 2021;32(6):6900-11.

Reddy RR, Nazeer Ahammed Y, Rama Gopal K, Raghuram DV. Optical electronegativity and refractive index of materials. Opt Mater. 1998;10(2):95-100.

Meena SL. Thermal and physical properties of Pm3+ ions doped lead lithium bismuth silicate glasses. J Pure Appl Ind Phys. 2019;9(11):72-81.

Dimitrov V, Sakka S. Linear and nonlinear optical properties of simple oxides II. J Appl Phys. 1996;79(3):1741-5.

Moustafa ES, Elkhateb F. The estimation of the oxide ion polarizability using electronegativity for B2O3-Li2O-Mo glass system. Chem Mater Sci. 2012;2(1):25-31.

Zhao X, Wang X, Lin H, Wang Z. Correlation among electronic polarizability, optical basicity and interaction parameter of Bi2O3-B2O3 glasses. Physica B Condens Matter. 2007;390(1-2):293-300.

Reddy RR, Nazeer Ahammed Y, Abdul Azeem P, Rama Gopal K, Rao TVR. Electronic polarizability and optical basicity properties of oxide glasses through average electronegativity. J Non Cryst Solids. 2001;286(3):169-80.

Moustafa ES, Elkhateb F. The estimation of the oxide ion polarizability for B2O3-Li2O-Mo glass system. Am J Appl Sci. 2012;9(3):446-9.

Shaaban KS, Abdel Wahab EA, El-Maaref AA, Abdelawwad M, Shaaban ER, Yousef ES, et al. Judd – Ofelt analysis and physical properties of erbium modified cadmium lithium gadolinium silicate glasses. J Mater Sci: Mater Electron. 2020;31:4986-96.

Tangboriboon N, Kunanuruksapong R, Sirivat A. Preparation and properties of calcium oxide from eggshells via calcination. Mater Sci-Pol. 2012;30(4):313-22.

Awogbemi O, Inambao F, Onuh EI. Modification and characterization of chicken eggshell for possible catalytic applications. Heliyon. 2020;6(10):e05283.

Witoon T. Characterization of calcium oxide derived from waste eggshell and its application as CO2 sorbent. Ceram Int. 2011;37(8):3291-8.

Ahmad W, Sethupathi S, Munusamy Y, Kanthasamy R. Valorization and calcined chicken eggshell for sulphur dioxide and hydrogen sulfide removal at low temperature. Catalysts. 2021;11(2):295.

Habte L, Shiferaw N, Mulathi D, Thenepalli T, Chilakala R, Ahn JW. Synthesis of nanocalcium oxide from waste eggshell by sol-gel method. Sustainability. 2019;11(11):3196.

Terzioğlu P, Yücel S, Kuş Ç. Review on a novel biosilica source for production of advanced silica-based materials: wheat husk. Asia-Pac J Chem Eng. 2019;14(1):e2262.

Gouran A, Aghel B, Nasirmanesh F. Biodiesel production from waste cooking oil using wheat bran ash as a sustainable biomass. Fuel. 2021;295:120542.

Ershard M, Ali A, Mehta NS, Singh RK, Singh SK, Pyare R. Mechnaical and biological response of (CeO2+La2O3)-substituted 45S5 bioactive glasses for biomedical application. J Aust Ceram Soc. 2020;56(4):1243-52.

Zaid MHM, Sidek HAA, El-Mallawany R, Almasri KA, Matori KA. Synthesis and characterization of samarium doped calcium soda-lime-silicate glass derived wollastonite glass-ceramics. J Mater Res Technol. 2020;9(6):13153-60.

Saddeek YB, Shaaban ER, Moustafa ES, Moustafa HM. Spectroscopic properties, electronic polarizability, and optical basicity of Bi2O3-Li2O-B2O3 glasses. Physica B Condens Matter. 2008;403(13-16):2399-407.

Muniz RF, Soares VO, Montagnini GH, Medina AN, Baesso ML. Thermal, optical and structural properties of relatively depolymerized sodium calcium silicate glass and glass-ceramic containing CaF2. Ceram Int. 2021;47(17):24966-72.

Chanthima N, Kaewkhao J. Properties of erbium luminescence in barium borophosphate glasses. Mater Today: Proc. 2017;4(5):6099-104.

Acikgoz A, Ceyhan G, Aktas B, Yalcin S, Demircan G. Luminescent, structural and mechanical properties of erbium oxide doped natural obsidian glasses. J Non Cryst Solids. 2021;572:121104.

Kaur R, Khanna A, González-Barriuso M, González F, Chen B. Structural, optical and thermal properties of glass and anti-glass phases in strontium tellurite and borotellurite systems doped with europium. Mater Res Bull. 2018;106:288-95.

Abdel Wahab EA, Shaaban KS, Yousef ES. Enhancement of optical and mechanical properties of sodium silicate glasses using zirconia. Opt Quant Electron. 2020;52(10):458.

Deepa M, Doddoji R, Dwaraka Viswanath CS, Chandrasekhar AV. Optical and NIR luminescence spectral studies: Nd3+-doped borosilicate glasses. J Lumin. 2019;213:191-6.

Abou Hussein EM, Shaban SE, Rammah YS, Hamed Misbah M, Marzouk MA. Newly developed CeO2 and Gd2O3-reinforced borosilicate glasses from municipal waste ash and their optical, structural, and gamma-ray shielding properties. Sci Rep. 2024;14:13673.

Gao G, Wei J, Shen Y, Peng M, Wondraczek L. Heavily Eu2O3-doped yttria-aluminoborate glasses for red photoconversion with a high quantum yield: luminescence quenching and statistics of cluster formation. J Mater Chem C. 2014;2(41):8678-82.

Saraf R, Shivakumara C, Behera S, Nagabhushana H, Dhananjaya N. Photoluminescence, photocatalysis and Judd–Ofelt analysis of Eu3+-activated layered BiOCl phosphors. RSC Adv. 2015;5:4109-20.

Ebendorff-Heidepriem H, Ehrt D. Formation and UV absorption of cerium, europium and terbium ions in different valencies in glasses. Opt Mater. 2000;15(1):7-25.

Shaaban SM, Al-Ghamdi H, Alsaif NAM, Rammah YS, Khattari ZY, Shams MS, et al. The role of Eu3+ ions on FTIR, UV–vis spectroscopy, photoluminescence, and mechanical properties of newly fabricated borate-based glasses. J Aust Ceram Soc. 2024;60(2):543-51.

Ari J, Cavillon M, Plantevin O, Lancry M, Poumellec B. Europium spectroscopic properties impacted by femtosecond laser 3D nanostructuring in lithium niobium borosilicate glasses. Opt Mater: X. 2022;16:100198.

Zikriya M, Renuka CG, Manjunath C. Optical absorption intensity analysis using Judd-Ofelt theory and photoluminescence investigation for red-emitting Eu3+: TiO2 nanoparticles. Solid State Sci. 2020;107:106371.

Kremenovic A, Bozanic DK, Welsch AM, Jancar B, Nikolic AS, Boskovic M, et al. Effects of Eu3+ concentration on structural, optical and vibrational properties of multifunctional Ce(1−x)Eu(x)O2−delta) nanoparticles synthesized by thermolysis of 2,4-pentanedione complexes. J Nanosci Nanotechnol. 2012;12(12):8893-9.

Barde RV. Influence of CeO2 content on complex optical parameters of phosphovanadate glass system. Spectrochim Acta A: Mol Biomol Spectrosc. 2016;153:160-4.

Saadati M, Akhavan O, Fazli H. Single-layer MoS2-MoO3-x heterojunction nanosheets with simultaneous photoluminescence and co-photocatalytic features. Catalysts. 2021;11(12):1445.

Schwarting M, Siol S, Talley K, Zakutayev A, Phillips C. Automated algorithms for band gap analysis from optical absorption spectra. Mater Discov. 2017;10:43-52.

Bajaj R, Rao AS, Vijaya Prakash G. Photoluminescence down-shifting studies of thermally stable Eu3+ ions doped borosilicate glasses for visible red photonic device applications. J Non Cryst Solids. 2022;575:121184.

Azlan MN, Halimah MK, Shafinas SZ, Daud WM. Polarizability and optical basicity of Er3+ ions doped tellurite based glasses. Chalcogenide Letters. 2014;11(7):319-35.

Kesavulu CR, Kim HJ, Lee SW, Kaewkhao J, Wantana N, Kothan S, et al. Influence of Er3+ ion concentration on optical and photoluminescence properties of Er3+-doped gadolinium-calcium silica borate glasses. J Alloys Compd. 2016;683:590-8.

Nabilah Razali NA, Mustafa IS, Azman NZN, Kamari HM, Rahman AA, Rosli K, et al. The physical and optical studies of erbium doped borosilicate glass. J Phys: Conf Ser. 2018;1083:012004.

Zagrai M, Suciu RC, Rada S, Pică ME, Pruneanu S. Structural and optical properties of Eu3+ ions in lead glass for photonic applications. J Non Cryst Solids. 2021;569:120988.

Hassib MD, Kaky KM, Kumar A, Şakar E, Sayyed MI, Baki SO, et al. Boro-silicate glasses co-doped Er+3/Yb+3 for optical amplifier and gamma radiation shielding applications. Physica B Condens Matter. 2019;567:37-44.

Mhareb MHA, Hashim S, Ghoshal SK, Alajerami YSM, Saleh MA, Maqableh MMA, et al. Optical and erbium ion concentration correlation in lithium magnesium borate glass. Optik. 2015;126(23):3638-43.

Hassan MA. Effect of halides addition on the ligand field of chromium in alkali borate glasses. J Alloys Compd. 2013;574:391-7.

Kashif I, Ratep A, Adel G. Polarizability, optical basicity and optical properties of SiO2B2O3Bi2O3TeO2 glass system. Appl Phys A. 2018;124:486.