Influence of rice husk and cabuya fiber on the physical and mechanical properties of adobe

Main Article Content

Danilo Servando Carrasco Pacheco
Enrique Martín Correa Barboza
Sócrates Pedro Muñoz Pérez
https://orcid.org/0000-0003-3182-8735
Juan Martín García Chumacero
https://orcid.org/0000-0001-7134-8408
Elver Sánchez Diaz
Carlos Arturo Damiani Lazo
https://orcid.org/0000-0001-5866-1723
Juan De Dios Malpartida Iturregui
https://orcid.org/0000-0002-3643-712X
Nestor Raúl Salinas Vasquez
https://orcid.org/0000-0001-5431-2737
Ana Paula Bernal Izquierdo

Abstract

Adobe is one of the most widely used materials in housing construction around the world due to its low cost and ease of preparation. However, one of its main disadvantages is its low compressive and flexural strength. This research aims to study the influence of rice husk (RH) and cabuya fibers (CF) on the physical and mechanical properties of adobe. RH, a by-product available in rice-producing countries, offers environmental and economic benefits, while CF are natural fibers obtained from the leaves of plants of the Agave family. Their incorporation in adobe mixes helps prevent cracks and improves the durability of the final product. The methodology used considered proportions of 0.75%, 5%, 10% and 20% of RH and 0.5%, 1%, 1.5% and 2% of CF per weight of dry soil. The results indicated that the optimum content was 0.75% RH combined with 2% CF, where properties such as absorption and unit weight were reduced, while compressive, flexural, stacking and tensile strength increased by 52.31%, 22.49%, 52.64% and 50.48%, respectively, compared to the standard adobe. Concluding that RH and CF are viable as reinforcements in adobe production, supporting the feasibility of using these combinations as an effective strategy to strengthen adobe structures.

Article Details

How to Cite
Carrasco Pacheco, D. S. ., Correa Barboza, E. M. ., Muñoz Pérez, S. P. ., García Chumacero, J. M. ., Sánchez Diaz, E. ., Damiani Lazo, C. A. ., Malpartida Iturregui, J. D. D. ., Salinas Vasquez, N. R. ., & Bernal Izquierdo, A. P. . (2025). Influence of rice husk and cabuya fiber on the physical and mechanical properties of adobe. Engineering and Applied Science Research, 52(1), 112–124. retrieved from https://ph01.tci-thaijo.org/index.php/easr/article/view/257623
Section
ORIGINAL RESEARCH

References

Rodríguez JD, Ma Q, Solís M. Experimental analysis of diagonal compression and splitting tests for the characterization of shear and tensile behavior of adobe masonry. Eng Struct. 2020;215:110633.

Muñoz P, Letelier V, Muñoz L, Bustamante MA. Adobe bricks reinforced with paper & pulp wastes improving thermal and mechanical properties. Constr Build Mater. 2020;254:119314.

Muñoz S, Villena L, Tesen F, Coronel Y, Garcia J, Ramos C. Influence of coconut fiber on mortar properties in masonry walls. Electron J Struct Eng. 2023;23(4):52-8.

Cyprien G, El Mendili Y, Konin A, Khoury E. Advancing earth-based construction: a comprehensive review of stabilization and reinforcement techniques for adobe and compressed earth blocks. Eng. 2024;5(2);750-83.

Krentowski J, Knyziak P, Pawlowicz J, Gavardashvili G. Historical masonry buildings’ condition assessment by non-destructive and destructive testing. Eng Fail Anal. 2023;146:107122.

de Castrillo MC, Ioannou I, Philokyprou M. Reproduction of traditional adobes using varying percentage contents of straw and sawdust. Constr Build Mater. 2021;294:123516.

Mellaikhafi A, Tilioua A, Souli H, Garoum M, Hamdi MAA. Characterization of different earthen construction materials in oasis of south-eastern Morocco (Errachidia Province). Case Stud Constr Mater. 2021;14:e00496.

Saini K, Matsagar VA, Kodur VR. Recent advances in the use of natural fibers in civil engineering structures. Constr Build Mater. 2024;411:134364.

Sakthi Balan G, Ravichandran M. Study of moisture absorption characteristics of jute fiber reinforced waste plastic filled polymer composite. Mater Today: Proc. 2020;27:712-7.

Babé C, Kidmo DK, Tom A, Mvondo RRN, Kola B, Djongyang N. Effect of neem (Azadirachta Indica) fibers on mechanical, thermal and durability properties of adobe bricks. Energy Rep. 2021;7(Suplement 5):686-98.

Kordi M, Farrokhi N, Pech-Canul MI, Ahmadikhah A. Rice husk at a glance: from agro-industrial to modern applications. Rice Sci. 2024;31(1):14-32.

Karam DS, Nagabovanalli P, Rajoo KS, Ishak CF, Abdu A, Rosli Z, et al. An overview on the preparation of rice husk biochar, factors affecting its properties, and its agriculture application. J Saudi Soc Agric Sci. 2022;21(3):149-59.

Dien LQ, Chung NH, Anh NTV, Duong TTT, Truyen DN, Nghia NH, et al. Rice husk integrated biochemical refinery for the production of nano- and bioproducts. Process Biochem. 2022;121:647-55.

Hu L, He Z, Zhang S. Sustainable use of rice husk ash in cement-based materials: environmental evaluation and performance improvement. J Clean Prod. 2020;264:121744.

Gestión. INEI: Rice production reached 220,000 tons and increased by 5% during January [Internet]. 2023 Mar 26 [cited 2024 Dec 10]. Available from: https://gestion.pe/economia/inei-produccion-de-arroz-alcanzo-220000-toneladas-y-aumento-en-5-durante-enero-del-2023-noticia/#google_vignette. (In Spanish)

Gob.pe. Production of paddy rice grew 7.0% nationwide and three departments accounted for 71.7% during May 2024 [Internet]. 2024 Jul 25 [cited 2024 Dec 10]. Available from: https://www.gob.pe/institucion/inei/noticias/993795-produccion-de-arroz-cascara-crecio-7-0-a-nivel-nacional-y-tres-departamentos-concentraron-el-71-7-durante-mayo-de-2024. (In Spanish)

Kamath SS, Chandrappa RK. Additives used in natural fibre reinforced polymer composites-a review. Mater Today: Proc. 2022;50:1417-24.

Elfaleh I, Abbassi F, Habibi M, Ahmad F, Guedri M, Nasri M, et al. A comprehensive review of natural fibers and their composites: an eco-friendly alternative to conventional materials. Results Eng. 2023;19:101271.

Shah I, Jing L, Fei ZM, Yuan YS, Farooq MU, Kanjana N. A review on chemical modification by using sodium hydroxide (NaOH) to investigate the mechanical properties of sisal, coir and hemp fiber reinforced concrete composites. J Nat Fibers. 2022;19(13):5133-51.

Hasan KMF, Horváth PG, Alpár T. Potential natural fiber polymeric nanobiocomposites: a review. Polymers. 2020;12(5):1072.

Bereche J, García J. Replacement of fine aggregate with refractory brick residue in concrete exposed to elevated temperatures. Revista Politecnica. 2024;53(2):79-88.

Chaname J, García J, Arriola G. Improvement of the mechanical properties of structural concrete using microporous Ethylene Vinyl Acetate. Revista Politecnica. 2024;53(2):17-26.

Cabanillas Hernandez G, García Chumacero JM, Villegas Granados LM, Arriola Carrasco GG, Marín Bardales NH. Sustainable use of wood sawdust as a replacement for fine aggregate to improve the properties of concrete: a Peruvian case study. Innov Infrastruct Solut. 2024;9(7):233.

De la Cruz Carlos MB, Jiménez Revilla WE, García Chumacero JM, Muñoz Pérez SP, Villegas Granados LM. Influence of sawdust on the mechanical behavior of C28 concrete containing ground glass. Innov Infrastruct Solut. 2024;9(11):433.

Gamboa O, Leonardo J, Muñoz S, Leiva J, Garcia J, Alvarez J. Effect of corn stover ash reinforced with cabuya fiber on the mechanical properties of concrete. J Sustain Archit Civ Eng. 2024;35(2):103-16.

Burgos Cotrina JA, Cubas Benavides EA, Garcia Chumacero JM. Analysis of the combination of glass and polypropylene fibers on the mechanical properties of mortar. J Build Pathol Rehabil. 2025;10:22.

García Chumacero JM, Acevedo Torres PL, Corcuera La Portilla CC, Muñoz Perez SP. Influence of artificial intelligence on the optimization of the dosage of natural hydraulic lime, plastic and metallic fibers on the geological characteristics of a treated soil. Revista Ingeniería de Construcción. 2023;38(3):473-84.

García Chumacero JM, Gonzales Macedo JL, Sánchez Castillo DJ. Contribution of agricultural ashes and HDPE as a waste material for a sustainable environment applied to the stabilization of a low plasticity clay soil. Innov Infrastruct Solut. 2024;9:67.

Garcia Chumacero WR, Garcia Chumacero JM, Muñoz Perez SP, Chávez Cotrina CO, Villegas Granados LM. Use of secondary aluminum slag powder on the strength of non-load-bearing lightweight concrete blocks. Civ Eng Archit. 2024;12(6):3733-41.

Cadenas Alvarado LY, Jacinto Huamanchumo RM, Garcia Chumacero JM, Salinas Vásquez NR, Chavez Cotrina CO. Experimental study of hybrid concrete blocks based on sawdust and calcined clay using cement as a binder. Innov Infrastruct Solut. 2024;9:445.

Muñoz Perez SP, Garcia Chumacero JM, Charca Mamani S, Villena Zapata LI. Influence of the secondary aluminum chip on the physical and mechanical properties of concrete. Innov Infrastruct. Solut. 2023;8(1):45.

García J, Arriola G, Villena L, Muñoz S. Strength of concrete using partial addition of residual wood ash with respect to cement. Revista Politecnica. 2023;52(1):45-54.

Morsy MI, Alakeel KA, Ahmed AE, Abbas AM, Omara AI, Abdelsalam NR, et al. Recycling rice straw ash to produce low thermal conductivity and moisture-resistant geopolymer adobe bricks. Saudi J Biol Sci. 2022;29(5):3759-71.

Muñoz Pérez SP, Charca Mamani S, Villena Zapata LI, Leiva Piedra JL, Gonzales Ayasta S, Rodriguez Lafitte ED, et al. Infuence of rice husk ash (RHA) with gypsum and ichu fbers in the processing of geopolymers. Innov Infrastruct Solut. 2023;8:211.

Ige O, Danso H. Experimental characterization of adobe bricks stabilized with rice husk and lime for sustainable construction. J Mater Civ Eng. 2022;34(2):0004059.

Ouedraogo M, Bamogo H, Sanou I, Dao K, Ouedraogo KAJ, Aubert JE, et al. Microstructure, physical and mechanical properties of adobes stabilized with rice husks. Int J Archit Herit. 2023;17(8):1348-63.

Vishavkarma A, Harish KV. Effect of rice husk ash on permeation characteristic of cementitious mortar. Mater Today: Proc. 2022;61:406-12.

Huy NS, Tan NN, Hang MTN, Quang LN. Environmentally friendly unburnt bricks using raw rice husk and bottom ash as fine aggregates: Physical and mechanical properties. J Sci Technol Civ Eng. 2021;15(1):110-20.

Modjonda, Souaibou, Etienne Y, Raidandi D. Thermal and mechanical characterization of compressed clay bricks reinforced by rice husks for optimizing building in Sahelian Zone. Adv Mater Phys Chem. 2023;13(10):177-96.

Garcia Chumacero JM, Acevedo Torres PL, Criss Corcuera La Portilla C, Muñoz Pérez SP, Villena Zapata LI. Effect of the reuse of plastic and metallic fibers on the characteristics of a gravelly soil with clays stabilized with natural hydraulic lime. Innov Infrastruct Solut. 2023;8:185.

Hany E, Fouad N, Abdel-Wahab M, Sadek E. Investigating the mechanical and thermal properties of compressed earth bricks made by eco-friendly stabilization materials as partial or full replacement of cement. Constr Build Mater. 2021;281:122535.

Heniegal AM, Ramadan MA, Naguib A, Agwa IS. Study on properties of clay brick incorporating sludge of water treatment plant and agriculture waste. Case Stud Constr Mater. 2020;13:e00397.

Adazabra AN, Viruthagiri G, Yaw Foli B. Evaluating the technological properties of fired clay bricks incorporated with palm kernel shell. J Build Eng. 2023;72:106673.

Muñoz S, Rojas M, Villena L, Tepe V, Garcia J, Alvarez J. Physical and mechanical characterization of cementstabilized compressed earth bricks. Revista Ingeniería de Construcción. 2024;39(1):85-95.

Araya-Letelier G, Gonzalez-Calderon H, Kunze S, Burbano-Garcia C, Reidel U, Sandoval C, et al. Waste-based natural fiber reinforcement of adobe mixtures: Physical, mechanical, damage and durability performance assessment. J Clean Prod. 2020;273:122806.

Ministry of Housing, Construction and Sanitation. National building regulations, technical building standard NTE 0.80, design and construction with reinforced earth. Lima: Construction and Management Institute; 2017. (In Spanish)

ASTM. ASTM D2487: Standard practice for classification of soils for engineering purposes (unified soil classification system). West Conshohocken: ASTM International; 2011.

ASTM. ASTM D4318: Standard test methods for liquid limit, plastic limit, and plasticity index of soils. West Conshohocken: ASTM International; 2010.

ASTM. ASTM D2216: Standard test methods for laboratory determination of water (moisture) content of soil and rock by mass. West Conshohocken: ASTM International; 2019.

ASTM. ASTM E1621-94(1999): Standard guide for x-ray emission spectrometric analysis. West Conshohocken: ASTM International; 2017.

Kabir H, Garg N. Rapid prediction of cementitious initial sorptivity via surface wettability. NPJ Mater Degrad. 2023;7:52.

Labiad Y, Meddah A, Beddar M. Performance of sisal fiber-reinforced cement-stabilized compressed-earth blocks incorporating recycled brick waste. Innov Infrastruct Solut. 2023;8:107.

Subramanian GKM, Balasubramanian M, Jeya Kumar AA. A review on the mechanical properties of natural fiber reinforced compressed earth blocks. Journal of Natural Fibers. 2022;19(14):7687-701.

Araya-Letelier G, Antico FC, Burbano-Garcia C, Concha-Riedel J, Norambuena-Contreras J, Concha J, et al. Experimental evaluation of adobe mixtures reinforced with jute fibers. Constr Build Mater. 2021;276:122127.

Lee JB, Dereme D, Carmeliet J. Drop impact on natural porous stones. J Colloid Interface Sci. 2016;469:147-56.

Ouedraogo M, Dao K, Millogo Y, Aubert JE, Messan A, Seynou M, et al. Physical, thermal and mechanical properties of adobes stabilized with fonio (Digitaria exilis) straw. J Build Eng. 2019;23:250-8.

Ige O, Danso H. Physico-mechanical and thermal gravimetric analysis of adobe masonry units reinforced with plantain pseudo-stem fibres for sustainable construction. Constr Build Mater. 2021;273:121686.

Olacia E, Pisello AL, Chiodo V, Maisano S, Frazzica A, Cabeza LF. Sustainable adobe bricks with seagrass fibres. Mechanical and thermal properties characterization. Constr Build Mater. 2020;239:117669.

López X, Torbisco D, Rodríguez J, Eyzaguirre C. Benefits of cabuya fiber in the mechanical properties of compacted adobe. The 7th International Engineering, Sciences and Technology Conference (IESTEC); 2019 Oct 9-11; Panama. USA: IEEE; 2019. p. 455-60.

Eslami A, Mohammadi H, Banadaki HM. Palm fiber as a natural reinforcement for improving the properties of traditional adobe bricks. Constr Build Mater. 2022:325:126808.

Bouchefra I, EL Bichri FZ, Chehouani H, Benhamou B. Mechanical and thermophysical properties of compressed earth brick rienforced by raw and treated doum fibers. Constr Build Mater. 2022;318:126031.

Khoudja D, Taallah B, Izemmouren O, Atiki E, Almeasar KS, Guettala A. Compressive and flexural strength of adobe bricks filled with date palm waste aggregates (DPWA) and the relationship between their water absorption and thermal properties. The 1st International Conference on Engineering and Applied Natural Sciences; 2022 May 10-13; Konya, Turkey. p. 10-3.

Liu X, Li J, Li F, Wang J, Lu H. Study on the properties of an ecotype mortar with rice husks and sisal fibers. Adv Civ Eng. 2021;2021(1):1-11.

Babé C, Kidmo DK, Tom A, Mvondo RRN, Boum RBE, Djongyang N. Thermomechanical characterization and durability of adobes reinforced with millet waste fibers (sorghum bicolor). Case Stud Constr Mater. 2020;13:e00422.

Nazir MH, Al-Marzouqi AH, Ahmed W, Zaneldin E. The potential of adopting natural fibers reinforcements for fused deposition modeling: characterization and implications. Heliyon. 2023;9(4):e15023.

Yang X, Wang H. Strength of hollow compressed stabilized earth-block masonry prisms. Adv Civ Eng. 2019;2019(1):1-8.

Khorasani FF, Kabir MZ. Experimental study on the effectiveness of short fiber reinforced clay mortars and plasters on the mechanical behavior of adobe masonry walls. Case Stud Constr Mater. 2022;16:e00918.

Murthi P, Bhavani M, Saqlain Musthaq M, Osman Jauhar M, Rama Devi V. Development of relationship between compressive strength of brick masonry and brick strength. Mater Today: Proc. 2021;39:258-62.

Onyenokporo NC, Taki A, Montalvo LZ, Oyinlola MA. Exploring the impact of rice husk ash masonry blocks on building energy performance. Buildings. 2024;14(5):1290.

Ramakrishnan S, Loganayagan S, Kowshika G, Ramprakash C, Aruneshwaran M. Adobe blocks reinforced with natural fibres: a review. Mater Today: Proc. 2021;45:6493-9.