Conversion of methyl methacrylate to methyl isobutyrate via hydrogenation over Ni/zeolites catalysts

Main Article Content

Ramzi Saif
Surachet Hongkailers
Napida Hinchiranan

Abstract

According to the zero waste and upcycling policy, this work aims to utilize waste polymethyl methacrylate (PMMA) by its conversion to methyl isobutyrate (MIB) via hydrogenation over nickel (Ni) based catalysts supported on the commercial zeolites: HY, H-Beta-27 (SiO2/Al2O3 mol ratio = 27), H-Beta-40 (SiO2/Al2O3 mol ratio = 40), and H-ZSM-5. The appropriate catalyst support was first screened by using MMA monomer as the substrate for hydrogenation. Under 30 bar initial hydrogen pressure (PH2) at 250 °C for 3 h, the Ni/H-beta-27 catalyst effectively promoted hydrogenation to achieve an 85% MMA conversion level with a 56.2 wt% MIB yield because of its larger external surface area and pore size. A higher initial PH2 (40 bar) and longer reaction time (5 h) improved the MIB yield up to 84.6 wt%. For hydrogenation of the MMA portion in a pyrolysis liquid product derived from waste PMMA, a MMA conversion level of 99.7% was achieved when hydrogenation was operated under 30 bar initial PH2 and 250 oC for 5 h. However, only a 36.3 wt% MIB yield was obtained with a noticeable formation of coupling and cyclic compounds at 42 wt% and 18 wt%, respectively. The enhancement of the initial PH2 to 40 bar overcame this problem and increased the MIB yield to 47.6 wt%.

Article Details

How to Cite
Saif, R., Hongkailers, S., & Hinchiranan, N. (2024). Conversion of methyl methacrylate to methyl isobutyrate via hydrogenation over Ni/zeolites catalysts. Engineering and Applied Science Research, 51(2), 141–151. Retrieved from https://ph01.tci-thaijo.org/index.php/easr/article/view/254078
Section
ORIGINAL RESEARCH

References

Esmizadeh E, Khalili S, Vahidifar A, Naderi G, Dubois C. Waste polymethyl methacrylate (PMMA): recycling and high-yield monomer recovery. In: Martínez L, Kharissova O, Kharisov B, editors. Handbook of Ecomaterials. Cham: Springer; 2018. p. 1-33.

Moens EKC, De Smit K, Marien YW, Trigilio AD, Van Steenberge PHM, Van Geem KM, et al. Progress in reaction mechanisms and reactor technologies for thermochemical recycling of poly(methyl methacrylate). Polymers. 2020;12(8):1667.

Kaminsky W, Eger C. Pyrolysis of filled PMMA for monomer recovery. J Anal Appl Pyrolysis. 2001;58-59:781-7.

Vassilev I, Hernandez PA, Batlle-Vilanova P, Freguia S, Krömer JO, Keller J, et al. Microbial electrosynthesis of isobutyric, butyric, caproic acids, and corresponding alcohols from carbon dioxide. ACS Sustainable Chem Eng. 2018;6(7):8485-93.

Kelsey DR, Scardino BM, Grebowicz JS, Chuah HH. High impact, amorphous terephthalate copolyesters of rigid 2,2,4,4-tetramethyl-1,3-cyclobutanediol with flexible diols. Macromolecules. 2000;33(16):5810-8.

Zhang K, Woodruff AP, Xiong M, Zhou J, Dhande YK. A synthetic metabolic pathway for production of the platform chemical isobutyric acid. ChemSusChem. 2011;4(8):1068-70.

Besecke S, Schroeder G, Siegert HJ, Gaenzler W, inventors. Method for making isobutyric acid. United State: US Patents 4,452,999. 1987.

Zhou H, Huang Y, Cheng Y, Wang L, Li X. Hydrogenation of methyl methacrylate under mild conditions using biosynthesis Ru catalyst. J Ind Eng Chem. 2017;47:221-7.

Aldea R, Alper H. Ruthenium clay catalyzed chemoselective hydrogenation of unsaturated esters, epoxides, sulfones and phosphonates. J Organomet Chem. 1998;551(1-2):349-54.

Kim YW, Kim MJ. Magnetically recoverable palladium nanocatalyst for chemoselective olefin hydrogenation. Bull Korean Chem Soc. 2010;31(5):1368-70.

Natour S, Abu-Reziq R. Immobilization of palladium catalyst on magnetically separable polyurea nanosupport. RSC Adv. 2014;4:48299-309.

Shesterkina AA, Vikanova KV, Zhuravleva VS, Kustov AL, Davshan NA, Mishin IV, et al. A novel catalyst based on nickel phyllosilicate for the selective hydrogenation of unsaturated compounds. Molec Catal. 2023;547:113341.

André RF, Meyniel L, Carenco S. Nickel carbide (Ni3C) nanoparticles for catalytic hydrogenation of model compounds in solvent. Catal Sci Technol. 2022;12:4572-83.

Kim J, Han SW, Kim JC, Ryoo R. Supporting nickel to replace platinum on zeolite nanosponges for catalytic hydroisomerization of n-dodecane. ACS Catal. 2018;8(11):10545-54.

Zhuravleva VS, Shesterkina AA, Strekalova AA, Kapustin GI, Dunaev SF, Kustov AL. Microwave synthesis of nickel-based catalysts for selective hydrogenation of phenlacetylene to styrene. Russ J Phys Chem A. 2023;97(10):2120-4.

Phumpradit S, Reubroycharoen P, Kuchonthara P, Ngamcharussrivichai C, Hinchiranan N. Partial hydrogenation of palm oil-derived biodiesel over Ni/electrospun silica fiber catalysts. Catalysts. 2020;10(9):993.

Cuevas-García R, Téllez-Romero JG, Ramírez J, Sarabia-Bañuelos P, Puente-Lee I, Salcedo-Luna C, et al. Effect of the preparation method on particle size and reaction selectivity on naphthalene hydrogenation over Ni/H-MOR catalysts. Catal Today. 2021;360:63-71.

Song W, Liu Y, Baráth E, Zhao C, Lercher JA. Synergistic effects of Ni and acid sites for hydrogenation and C–O bond cleavage of substituted phenols. Green Chem. 2015;17:1204-18.

Luo CW, Li A. Synthesis of 3-picoline from acrolein dimethyl acetal and ammonia over NH4F-HF treated ZSM-5. Reac Kinet Mech Cat. 2018;125(1):365-80.

Bhavani AG, Kim WY, Kim JY, Lee JS. Improved activity and coke resistance by promoters of nanosized trimetallic catalysts for autothermal carbon dioxide reforming of methane. Appl Catal A-Gen. 2013;450:63-72.

Gong H, Xiao Z, Zhuang Y, Liang S, Li X, Zheng W. Core-shell meso-beta@mesoporous aluminosilicate supported Ni2P catalyst for the hydrodenitrogenation of quinoline: effect of core shell structure on Ni2P particle size. Fuel. 2021;302:121131.

Chintakanan P, Vitidsant T, Reubroycharoen P, Kuchonthara P, Kida T, Hinchiranan N. Bio-jet fuel range in biofuels derived from hydroconversion of palm olein over Ni/zeolite catalysts and freezing point of biofuels/Jet A-1 blends. Fuel. 2021;293:120472.

Lima PM, Garetto T, Cavalcante CL, Cardoso D. Isomerization of n-hexane on Pt–Ni catalysts supported on nanocrystalline H-BEA zeolite. Catal Today. 2011;172(1):195-202.

Liu Q, Zuo H, Wang T, Ma L, Zhang Q. One-step hydrodeoxygenation of palm oil to isomerized hydrocarbon fuels over Ni supported on nano-sized SAPO-11 catalysts. Appl Catal A-Gen. 2013;468:68-74.

Tieuli S, Mäki-Arvela P, Peurla M, Eränen K, Wärnå J, Cruciani G, et al. Hydrodeoxygenation of isoeugenol over Ni-SBA-15: Kinetics and modelling. Appl Catal A-Gen. 2019;580:1-10.

Penkova A, Dzwigaj S, Kefirov R, Hadjiivanov K, Che M. Effect of the preparation method on the state of nickel ions in BEA zeolites. A study by Fourier transform infrared spectroscopy of adsorbed CO and NO, temperature-programmed reduction, and X-Ray diffraction. J Phys Chem C. 2007;111(24):8623-31.

Sahle-Demessie E, Devulapelli VG, Hassan AA. Hydrogenation of anthracene in supercritical carbon dioxide solvent using Ni supported on Hβ-zeolite catalyst. Catalysts. 2012;2(1):85-100.

Peron DV, Zholobenko VL, de la Rocha MR, de Souza MD, Feris LA, Marcilio NR, et al. Nickel–zeolite composite catalysts with metal nanoparticles selectively encapsulated in the zeolite micropores. J Mater Sci. 2019;54(7):5399-411.

Yang H, Han T, Yang W, Sandström L, Jönsson PG. Influence of the porosity and acidic properties of aluminosilicate catalysts on coke formation during the catalytic pyrolysis of lignin. J Anal Appl Pyrolysis. 2022;165:105536.

Huang J, Jiang Y, Reddy Marthala VR, Bressel A, Frey J, Hunger M. Effect of pore size and acidity on the coke formation during ethylbenzene conversion on zeolite catalysts. J Catal. 2009;263(2):277-83.

Chen S, Qian TT, Ling LL, Zhang W, Gong BB, Jiang H. Hydrogenation of furfural to cyclopentanone under mild conditions by a structure-optimized Ni−NiO/TiO2 heterojunction catalyst. ChemSusChem. 2020;13(20):5507-15.

Song S, Yao S, Cao J, Di L, Wu G, Guan N, et al. Heterostructured Ni/NiO composite as a robust catalyst for the hydrogenation of levulinic acid to γ-valerolactone. Appl Catal B-Environ. 2017;217:115-24.

Motahari F, Mozdianfard MR, Salavati-Niasari M. Synthesis and adsorption studies of NiO nanoparticles in the presence of H2acacen ligand, for removing Rhodamine B in wastewater treatment. Process Saf Environ Prot. 2015;93:282-92.

Yaocíhuatl MG, Martín HL, Jorge AC. Dimerization of isobutene over nickel modified zeolites to obtain isooctene. Catal Lett. 2006;110(1):107-13.

Oehme G, Grassert I, Mennenga H, Baudisch H. On the mechanism of the Pd(II)-catalyzed dimerization and codimerization of methyl methacrylate: application of deuterium exchange experiments. J Mol Catal. 1986;37(1):53-62.

Chanyshev AD, Litasov KD, Furukawa Y, Kokh KA, Shatskiy AF. Temperature-induced oligomerization of polycyclic aromatic hydrocarbons at ambient and high pressures. Sci Rep. 2017;7(1):7889.

She T, Chu X, Zhang H. Dong J, Niu L, Lan X, et al. Ni-Mg/γ-Al2O3 catalyst for 4-methoxyphenol hydrogenation: effect of Mg modification for improving stability. J Nanopart Res. 2018;20:224.

Hu X, Zhang Z, Gholizadeh M, Zhang S, Lam CH, Xiong Z, et al. Coke formation during thermal treatment of bio-oil. Energy Fuels. 2020;34(7):7863-914.

Koninckx E, Mendes PSF, Thybaut JW, Broadbelt LJ. Ethylene oligomerization on nickel catalysts on a solid acid support: from New mechanistic insights to tunable bifunctionality. Appl Catal A-Gen. 2021;624:118296.

Anand M, Farooqui SA, Kumar R, Joshi R, Kumar R, Sibi MG, et al. Optimizing renewable oil hydrocracking conditions for aviation bio-kerosene production. Fuel Process Technol. 2016;151:50-8.