Assessment of polycyclic aromatic hydrocarbons in the soil around River Owan in Edo State, Nigeria: Occurrence, distribution, source, and health risk

Main Article Content

Akinyinka Akinnusotu
Justina E. Ukpebor
Felix E. Okieimen

Abstract

Environmental pollutants called polycyclic aromatic hydrocarbons (PAHs) are common contaminants with human health and environmental concerns. The 16 priority, 1-methylnaphthalene, and 2-methylnaphthalene PAHs in soil samples from agricultural farmland around River Owan, Edo State, Nigeria was determined by deploying a flame ionization detector with gas chromatography. The total concentration ∑16PAHs of the soil samples is in the range of 0.198 – 0.518µg/kg, ∑18PAHs 0.23 - 0.56 µg/kg, ∑LMW PAHs 0.095 – 0.205 µg/kg while the ∑HMW PAHs 0.087 - 0.348 µg/kg. The Concentration of ∑PAHs is in this order: SO1>SO4>SO5>SO6>SO2>SO7>SO3. The ratio of the LMW/HMW PAHs percentage is 43% - 57%. The ∑7cPAHs were in the range of 0.032 - 0.245 µg/kg with a mean value of 0.133 µg/kg. The ∑TEQ range is 0.004 - 0.139 while the BaP-EQ of the soil samples is 0.285 µg/kg indicating no risk. The diagnostic ratio showed more of the pyrogenic source. The percentage of petrogenic to pyrogenic in the ratio of Ant/(Ant + Phe) is 43% to 57%. The ratio of Flt/(Flt + Pry) is above >0.1 meaning they are from pyrogenic sources. The value of the children’s incremental lifetime cancer risk (ILCR) ranged from 6.43 x 10-8 - 6.46 x 10-6, 2.58 x 10-8 - 2.59 x 10-6, and 1.09 x 10-12 - 1.10 x 10-10 for dermal, ingestion and inhalation while for adult: 2.43 x 10-8 - 2.44 x 10-6, 1.37 x 10-8 - 1.37 x 10-6, and 9.27 x 10-13 - 9.32 x 10-11 for same routes of exposure respectively showing a negligible risk.

Article Details

How to Cite
Akinnusotu, A., Ukpebor, J. E., & Okieimen, F. E. (2024). Assessment of polycyclic aromatic hydrocarbons in the soil around River Owan in Edo State, Nigeria: Occurrence, distribution, source, and health risk. Engineering and Applied Science Research, 51(3), 399–408. Retrieved from https://ph01.tci-thaijo.org/index.php/easr/article/view/253724
Section
ORIGINAL RESEARCH
Author Biography

Felix E. Okieimen, Department of Chemistry, University of Benin, Benin City, Nigeria

 

 

References

Zhang Y, Tao S. Global atmospheric emission inventory of polycyclic aromatic hydrocarbons (PAHs) for 2004. Atmos Environ. 2009;43(4):812-9.

Lawal AT. Polycyclic aromatic hydrocarbons. A review. Cogent Environ Sci. 2017;3(1):1339841.

Lee CC, Chen CS, Wang ZX, Tien CJ. Polycyclic aromatic hydrocarbons in 30 river ecosystems, Taiwan: sources, and ecological and human health risks. Sci Total Environ. 2021;795:148867.

Torres-Moreno C, Puente-DelaCruz L, Codling G, Villa AL, Cobo M, Klanova J, et al. Polycyclic aromatic hydrocarbons (PAHs) in human breast milk from Colombia: spatial occurrence, sources and probabilistic risk assessment. Environ Res. 2022;204:111981.

Zhang J, Qu C, Qi S, Cao J, Zhan C, Xing X, et al. Polycyclic aromatic hydrocarbons (PAHs) in atmospheric dustfall from the industrial corridor in Hubei Province, Central China. Environ Geochem Health. 2015;37(5):891-903.

Chen Y, Zhang J, Zhang F, Li F, Zhou M. Polycyclic aromatic hydrocarbons in farmland soils around main reservoirs of Jilin Province, China: occurrence, sources and potential human health risk. Environ Geochem Health. 2018;40(2):791-802.

Arowojolu IM, Tongu SM, Itodo AU, Sodre FF, Kyenge BA, Nwankwo RC. Investigation of sources, ecological and health risks of sedimentary polycyclic aromatic hydrocarbons in River Benue, Nigeria. Environ Technol Innov. 2021;22:101457.

Wang W, Simonich SLM, Xue M, Zhao J, Zhang N, Wang R, et al. Concentrations, sources and spatial distribution of polycyclic aromatic hydrocarbons in soils from Beijing, Tianjin and surrounding areas, North China. Environ Pollut. 2010;158(5):1245-51.

US EPA (Office of Research and Development, National Center for Environmental Assessment). Exposure factors handbook: 2011 edition. EPA/600/R-090/052F. Washington: Environmental Protection Agency; 2011.

Tong R, Yang X, Su H, Pan Y, Zhang Q, Wang J, et al. Levels, sources and probabilistic health risks of polycyclic aromatic hydrocarbons in the agricultural soils from sites neighboring suburban industries in Shanghai. Sci Total Environ. 2018;616-617:1365-73.

Baran A, Klimkowicz-Pawlas A, Ukalska-Jaruga A, Mierzwa-Hersztek M, Gondek K, Szara-Bąk M, et al. Distribution of polycyclic aromatic hydrocarbons (PAHs) in the bottom sediments of a dam reservoir, their interaction with organic matter and risk to benthic fauna. J Soils Sediments. 2021;21(6):2418-31.

Bhardwaj LK, Sharma S, Jindal T. Occurrence of Polycyclic aromatic hydrocarbons (PAHs) in the Lake Water at Grovnes Peninsula Over East Antarctica. Chemistry Africa. 2021;4:965-82.

Rajpara RK, Dudhagara DR, Bhatt JK, Gosai HB, Dave BP. Polycyclic aromatic hydrocarbons (PAHs) at the Gulf of Kutch, Gujarat, India: occurrence, source apportionment, and toxicity of PAHs as an emerging issue. Mar Pollut Bull. 2017;119(2):231-8.

Pessah IN, Lein PJ, Seegal RF, Sagiv SK. Neurotoxicity of polychlorinated biphenyls and related organohalogens. Acta Neuropathol. 2019;138(3):363-87.

Rao A, Douglas SC, Hall JM. Endocrine disrupting chemicals, hormone receptors, and acne vulgaris: a connecting hypothesis. Cells. 2021;10(6):1439.

Cao R, Zhang H, Geng N, Fu Q, Teng M, Zou L, et al. Diurnal variations of atmospheric polycyclic aromatic hydrocarbons (PAHs) during three sequent winter haze episodes in Beijing, China. Sci Total Environ. 2018;625:1486-93.

Hazarika N, Das A, Kamal V, Anwar K, Srivastava A, Jaina VK. Particle phase PAHs in the atmosphere of Delhi-NCR: with spatial distribution, source characterization and risk approximation. Atmos Environment. 2019;200:329-42.

Zhang R, Han M, Yu K, Kang Y, Wang Y, Huang X, et al. Distribution, fate and sources of polycyclic aromatic hydrocarbons (PAHs) in atmosphere and surface water of multiple coral reef regions from the South China Sea: a case study in spring-summer. J Hazard Mater. 2021;412:125214.

Tong Y, Chen L, Liu Y, Wang Y, Tian S. Distribution, sources and ecological risk assessment of PAHs in surface seawater from coastal Bohai Bay, China. Mar Pollut Bull. 2019;142:520-4.

Bhutto SUA, Xing X, Shi M, Mao Y, Hu T, Tian Q, et al. Occurrence and distribution of OCPs and PAHs in water, soil and sediment of Daye lake. J Geochem Explor. 2021;226:106769.

Yu G, Zhang Z, Yang G, Zheng W, Xu L, Cai Z. Polycyclic aromatic hydrocarbons in urban soils of Hangzhou: status, distribution, sources, and potential risk. Environ Monit Assess. 2014;186(5):2775-84.

Han B, Zheng L, Lin F. Risk assessment and source apportionment of PAHs in surface sediments from Caofeidian Long Island, China. Mar Pollut Bull. 2019;145:42-6.

Okedeyi OO, Nindi MM, Dube S, Awofolu OR. Distribution and potential sources of polycyclic aromatic hydrocarbons in soils around coal-fired power plants in South Africa. Environ Monit Assess. 2013;185:2073-82.

Kim L, Jeon HJ, Kim YC, Yang SH, Choi H, Kim TO, et al. Monitoring polycyclic aromatic hydrocarbon concentrations and distributions in rice paddy soils from Gyeonggi do, Ulsan, and Pohang. Appl Biol Chem. 2019;62:18.

Akinnusotu A, Ukpebor JE, Okieimen FE. Assessment of polycyclic aromatic hydrocarbons (PAHs) in sediment and fish samples of River Owan, and agricultural soil around the same River in Edo State, Nigeria. Environ Sci Proc. 2021;7(1):11.

Wretling S, Eriksson A, Eskhult GA, Larsson B. Polycyclic aromatic hydrocarbons (PAHs) in Swedish smoked meat and fish. J Food Compos Anal. 2010;23(3):264-72.

Al-Alam J, Fajloun Z, Chbani A, Millet M. A multiresidue method for the analysis of 90 pesticides, 16 PAHs, and 22 PCBs in honey using QuEChERS–SPME. Anal Bioanal Chem. 2017;409(21):5157-69.

Abballe C, Gomes FML, Lopes BD, de Oliveira APF, Berto MI, Efraim P, et al. Cocoa beans and derived products: effect of processing on polycyclic aromatic hydrocarbon levels. LWT. 2021;135:110019.

Sadowska-Rociek A, Surma M, Cieślik E. Determination of PAHs in cocoa samples using d-SPE with different sorbents. J Microbiol Biotechnol Food Sci. 2015;4(SI3):135-7.

Shariatifar N, Moazzen M, Arabameri M, Moazzen M, Khaniki GJ, Sadighara P. Measurement of polycyclic aromatic hydrocarbons (PAHs) in edible mushrooms (raw, grilled and fried) using MSPE-GC/MS method: a risk assessment study. Appl Biol Chem. 2021;64(1):61.

Roda G, Arnoldi S, Casagni E, Dei Cas M, Silva L, Carini M. Determination of polycyclic aromatic hydrocarbons in lipstick by gas-chromatography coupled to mass spectrometry: a case history. J Pharma Biomed Anal. 2019;165:386-92.

Xiao HQ, Wang HW, Wang C, Yu HM, Fu YL. Determination of polycyclic aromatic hydrocarbons in cosmetics using gas chromatography-mass spectrometry. Chin J Anal Lab. 2012;31(7):43-6.

Adekunle AS, Oyekunle JAO, Ola IJ, Obisesan OR, Maxakato NW. Determination of polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) in some personal care products in Nigeria. Toxicol Rep. 2018;5:994-1001.

Wang SW, Hsu KH, Huang SC, Tseng SH, Wang DY, Cheng HF. Determination of polycyclic aromatic hydrocarbons (PAHs) in cosmetic products by gas chromatography-tandem mass spectrometry. J Food Drug Anal. 2019;27(3):815-24.

Asagbra MC, Adebayo AS, Anumudu CI, Ugwumba OA, Ugwumba AAA. Polycyclic aromatic hydrocarbons in water, sediment and fish from the Warri River at Ubeji, Niger Delta, Nigeria. Afr J Aquat Sci. 2015;40(2):193-9.

Olayinka OO, Adewusi AA, Olujimi OO, Aladesida AA. Polycyclic Aromatic hydrocarbons in sediment and health risk of fish, crab and shrimp around Atlas Cove, Nigeria. J Health Pollut. 2019;9(24):191204.

Abayi JJM, Gore CT, Nagawa C, Bandowe BAM, Matovu H, Mubiru E, et al. Polycyclic aromatic hydrocarbons in sediments and fish species from the White Nile, East Africa: bioaccumulation potential, source apportionment, ecological and health risk assessment. Environ Pollut. 2021;278:116855.

Cloutier PL, Fortin F, Groleau PE, Brousseau P, Fournier M, Desrosiers M. QuEChERS extraction for multi-residue analysis of PCBs, PAHs, PBDEs and PCDD/Fs in biological samples. Talanta. 2017;165:332-8.

Santos PM, del Nogal Sánchez M, Pavón JLP, Cordero BM. Determination of polycyclic aromatic hydrocarbons in human biological samples: a critical review. TrAC Trends Anal Chem. 2019;113:194-209.

Akinnusotu A, Arawande JO. Physicochemical characteristics and heavy metals concentration in sub surface soil at different dumpsites in Rufus Giwa Polytechnic, Owo, Ondo State, Nigeria. J Environ Agric Sci. 2016;8:21-8.

Food and Agriculture Organisation (FAO). Guideline for soil description. 3rd ed. Rome: FAO; 1990.

Riaz R, Ali U, Li J, Zhang G, Alam K, Sweetman AJ, et al. Assessing the level and sources of polycyclic aromatic hydrocarbons (PAHs) in soil and sediments along Jhelum riverine system of lesser Himalayan region of Pakistan. Chemosphere. 2019;216:640-52.

Jiao W, Wang T, Khim JS, Luo W, Hu W, Nail JE, et al. Polycyclic aromatic hydrocarbons in soils along the coastal and estuarine areas of the northern Bohai and Yellow seas, China. Environ Monit Assess. 2013;185(10):8185-95.

Moore F, Akhbarizadeh R, Keshavarzi B, Khabazi S, Lahijanzadeh A, Kermani M. Ecotoxicological risk of polycyclic aromatic hydrocarbons (PAHs) in urban soil of Isfahan metropolis, Iran. Environ Monit Assess. 2015;187(4):207.

Nieuwoudt C, Pieters R, Quinn LP, Kylin H, Borgen AR, Bouwman H. Polycyclic aromatic hydrocarbons (PAHs) in soil and sediment from industrial, residential, and agricultural areas in Central South Africa: an initial assessment. Soil Sediment Contam. 2011;20(2):188-204.

Maliszewska-Kordybach B, Smreczak B, Klimkowicz-Pawlas A. Concentrations, sources, and spatial distribution of individual polycyclic aromatic hydrocarbons (PAHs) in agricultural soils in the Eastern part of the EU: Poland as a case study. Sci Total Environ. 2009;407(12):3746-53.

Wang XT, Miao Y, Zhang Y, Li YC, Wu MH, Yu G. Polycyclic aromatic hydrocarbons (PAHs) in urban soils of the megacity Shanghai: Occurrence, source apportionment and potential human health risk. Sci Total Environ. 2013;447:80-9.

Yang Y, Woodward LA, Li QX, Wang J. Concentrations, source and risk assessment of polycyclic aromatic hydrocarbons in soils from Midway Atoll, North Pacific Ocean. PLoS One. 2014;9(1):e86441.

Ogbeide O, Tongo I, Ezemonye L. Risk assessment of agricultural pesticides in water, sediment, and fish from Owan River, Edo State, Nigeria. Environ Monit Assess. 2015;187(10):654.

Abulude FO, Akinnusotu A, Adeyemi A. Global positioning system and it’s wide application. Continental J Inf Technol. 2015;9(1):22-32.

dos Santos MM, de Almeida Brehm F, Filippe TC, Reichert G, de Azevedo JCR. PAHs diagnostic ratios for the distinction of petrogenic and pyrogenic sources: applicability in the Upper Iguassu Watershed - Parana, Brazil. Rev Bras Recur Hidr. 2017;22:1-14.

Tobiszewski M, Namieśnik J. PAH diagnostic ratios for the identification of pollution emission sources. Environ Pollut. 2012;162:110-9.

Yunker MB, Macdonald RW, Vingarzan R, Mitchell RH, Goyette D, Sylvestre S. PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Org Geochem. 2002;33(4):489-515.

Wang J, Liu J, Ling W, Huang Q, Gao Y. Composite of PAH-degrading endophytic bacteria reduces contamination and health risks caused by PAHs in vegetables. Sci Total Environ. 2017;598:471-8.

Wang C, Wu S, Zhou S, Wang H, Li B, Chen H, et al. Polycyclic aromatic hydrocarbons in soils from urban to rural areas in Nanjing: Concentration, source, spatial distribution, and potential human health risk. Sci Total Environ. 2015;527-528:375-83.

Richter-Brockmann S, Achten C. Analysis and toxicity of 59 PAH in petrogenic and pyrogenic environmental samples including dibenzopyrenes, 7H-benzo[c]fluorene, 5-methylchrysene and 1-methylpyrene. Chemosphere. 2018;200:495-503.

Teaf CM. Polycyclic aromatic hydrocarbons (PAHs) in urban soil: a Florida risk assessment perspective. Int J Soil Sediment Water. 2008;1(2):1-14.

Yahaya A, Okoh OO, Okoh AI, Adeniji AO. Occurrences of organochlorine pesticides along the course of the Buffalo River in the Eastern Cape of South Africa and its health implications. Int J Environ Res Public Health. 2017;14 (11):1372.

Qu C, Albanese S, Lima A, Hope D, Pond P, Fortelli A, et al. The occurrence of OCPs, PCBs, and PAHs in the soil, air, and bulk deposition of the Naples metropolitan area, southern Italy: implications for sources and environmental processes. Environ Int. 2019;124:89-97.

Xing X, Mao Y, Hu T, Tian Q, Chen Z, Liao T, et al. Spatial distribution, possible sources and health risks of PAHs and OCPs in surface soils from Dajiuhu Sub-alpine Wetland, Central China. J Geochem Explor. 2020;208:106393.

Nisbet ICT, LaGoy PK. Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regul Toxicol Pharmacol. 1992;16(3):290-300.

Hussain K, Rahman M, Prakash A, Hoque RR. Street dust bound PAHs, carbon and heavy metals in Guwahati city–Seasonality, toxicity and sources. Sustain Cities Soc. 2015;19:17-25.

Kosek K, Ruman M. Arctic freshwater environment altered by the accumulation of commonly determined and potentially new POPs. Water. 2021;13(13):1739.

Ding Y, Huang H, Zhang Y, Zheng H, Zeng F, Chen W, et al. Polycyclic aromatic hydrocarbons in agricultural soils from Northwest Fujian, Southeast China: spatial distribution, source apportionment, and toxicity evaluation. J Geochem Explor. 2018;195:121-9.

Wu H, Sun B, Li J. Polycyclic aromatic hydrocarbons in sediments/soils of the rapidly urbanized lower reaches of the River Chaohu, China. Int J Environ Res Public Health. 2019;16(13):2302.

Tavakoly Sany SB, Hashim R, Salleh A, Rezayi M, Mehdinia A, Safari O. Polycyclic aromatic hydrocarbons in coastal sediment of Klag Strait. Malaysia: distribution pattern, risk assessment and sources. PLoS One. 2014;9(4):e94907.

Zhao Z, Qin Z, Cao J, Xia L. Source and ecological risk characteristics of PAHs in sediments from Qinhuai River and Xuanwu Lake, Nanjing, China. J Chem. 2017;2017:3510796.

Ugochukwu UC, Onuorah AL, Okwu-Delunzu VU, Odinkonigbo UL, Onuora OH. Effects of power station and abattoir on PAH input into sediments of Oji River: ecological and human health exposure risks. Environ Monit Assess. 2019;191(12):775.