Fixed-structure heading-autopilot controller design using meta-heuristics
Main Article Content
Abstract
This work presents an alternative efficient means to synthesise a fixed-structure autopilot controller that is both robust and optimal using meta-heuristics (MHs). The problem is aimed at finding controllers in several sections with the objective of minimising integral square error, subject to several constraints to ensure a robust, precise, and rapid reference tracking control system. An optimum control problem was posed while several MHs were employed to solve the problem, and their performances were investigated. Based on the results, a Self-Adaptive Differential Evolution (JADE) was found to be the most efficient algorithm. The study presents a simple but effective tool for designing a robust and optimum autopilot flight controller. It also explores the performance of several MHs in the new optimisation design field of robust and optimal flight control systems.
Article Details
![Creative Commons License](http://i.creativecommons.org/l/by-nc-nd/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Bouguettaya A, Zarzour H, Kechida A, Taberkit AM. Deep learning techniques to classify agricultural crops through UAV imagery: a review. Neural Comput Applic. 2022;34(12):9511-36.
Vong CN, Conway LS, Feng A, Zhou J, Kitchen NR, Sudduth KA. Corn emergence uniformity estimation and mapping using UAV imagery and deep learning. Comput Electron Agric. 2022;198:107008.
Biswas K. Military Aviation Principles. In: Dekoulis E, editor. Military Engineering. London: IntechOpen; 2019. p. 1-25.
Bravo-Mosquera PD, Botero-Bolivar L, Acevedo-Giraldo D, Cerón-Muñoz HD. Aerodynamic design analysis of a UAV for superficial research of volcanic environments. Aerosp Sci Technol. 2017;70:600-14.
Ahmed F, Mohanta JC, Keshari A, Yadav PS. Recent advances in unmanned aerial vehicles: a review. Arab J Sci Eng. 2022;47(7):7963-84.
Oyana SNO, Li J, Usman M. Three-layer multi-uavs path planning based on ROBL-MFO. Guid Navigat Control. 2022;02(03):2250017.
Lu H, Zhen Y, Hao M. Nonlinear autopilot design for fixed-wing UAV using disturbance observer based backstepping. 2020 Chinese Automation Congress (CAC); 2020 Nov 6-8; Shanghai, China. USA: IEEE; 2020. p. 4423-8.
Zhang W, Jia J, Zhou S, Guo K, Yu X, Zhang Y. A safety planning and control architecture applied to a quadrotor autopilot. IEEE Robot Autom Lett. 2023;8(2):680-7.
Zhao YY, Yang Z, Kong WR, Piao HY, Huang JC, Lv XF, et al. Hybrid gradient vector fields for path-following guidance. Def Technol. 2023;28:165-82.
Yang X, An X, Wu Y, Ma F, Li B. Adaptive super-twisting sliding mode back-stepping control for hypersonic flight vehicle with impact angle constraint and autopilot dynamics. 17th International Conference on Control & Automation (ICCA); 2022 Jun 27-30; Naples, Italy. USA: IEEE; 2022. p. 38-43.
Yao Y, Deng Z, Zhang X, Lv C. Design of a quadrotor control software experimental validation platform based on real-time hardware-in-the-loop simulation. 10th International Conference on Educational and Information Technology (ICEIT); 2021 Jan 18-20; Chengdu, China. USA: IEEE; 2021. p. 239-43.
Evans WR. Control system synthesis by root locus method. Trans AIEE. 1950;69(1):66-9.
McFarlane D, Glover K. A loop-shaping design procedure using H/sub infinity/synthesis. IEEE Trans Autom Control. 1992;37(6):759-69.
Bemporad A, Morari M, Dua V, Pistikopoulos EN. The explicit linear quadratic regulator for constrained systems. Automatica. 2002;38(1):3-20.
Athans M. The role and use of the stochastic linear-quadratic-Gaussian problem in control system design. IEEE Trans Autom Control. 1971;16(6):529-52.
Mokhtari A, Benallegue A, Belaidi A. Polynomial linear quadratic Gaussian and sliding mode observer for a quadrotor unmanned aerial vehicle. J Robot Mechatron. 2005;17(4):483-95.
Nichols RA, Reichert RT, Rugh WJ. Gain scheduling for H-infinity controllers: a flight control example. IEEE Trans Control Syst Technol. 1993;1(2):69-79.
Latif Z, Shahzad A, Bhatti AI, Whidborne JF, Samar R. Autonomous landing of an UAV Using H∞ based model predictive control. Drones. 2022;6(12):416.
Alfi A, Khosravi A, Lari A. Swarm-based structure-specified controller design for bilateral transparent teleoperation systems via synthesis. IMA J Math Control Inf. 2014;31(1):111-36.
Lundstrøm P, Skogestad S, Wang ZQ. Performance weight selection for H-infinity and μ-control methods. Trans Inst Meas Control. 1991;13(5):241-52.
Alfi A, Bakhshi A, Yousefi M, Talebi HA. Design and implementation of robust-fixed structure controller for telerobotic systems. J Intell Robot Syst. 2016;83(2):253-69.
Feyel P. Evolutionary fixed-structure controller tuning against multiple requirements. IFAC-PapersOnLine. 2016;49(5):345-52.
Alaviyan Shahri ES, Alfi A, Tenreiro Machado JA. Fractional fixed-structure H∞ controller design using Augmented Lagrangian Particle Swarm Optimization with Fractional Order Velocity. Appl Soft Comput. 2019;77:688-95.
Feyel P, Duc G, Sandou G. Evolutionary fixed-structure μ-synthesis. IEEE Symposium on Computational Intelligence in Control and Automation (CICA); 2014 Dec 9-12; Orlando, USA. USA: IEEE; 2014. p. 1-8.
Gahinet P, Apkarian P. Decentralized and fixed-structure H∞ control in MATLAB. 50th IEEE Conference on Decision and Control and European Control Conference; 2011 Dec 12-15; Orlando, USA. USA: IEEE; 2011. p. 8205-10.
El-Mahallawy AA, Yousef HA, El-Singaby MI, Madkour AA, Youssef AM. Robust flight control system design using H∞ loop-shaping and recessive trait crossover genetic algorithm. Expert Syst Appl. 2011;38(1):169-74.
Qing-Tang F, Zhi-Hong J, Ji-Hong Z, Shi-Qian L. Fixed structure flight control law design based on genetic algorithm. The Proceedings of the Multiconference on Computational Engineering in Systems Applications; 2006 Oct 4-6; Beijing, China. USA: IEEE; 2006. p. 659-62.
Sedehi AG, Alfi A. Swarm-based robust fixed-structure controller design for buck converter using Kharitonov approach: design and experiment. Int J Dynam Control. 2022;10(4):1251-64.
Maruta I, Kim TH, Sugie T. Synthesis of fixed-structure H∞ controllers via constrained particle swarm optimization. IFAC Proc Vol. 2008;41(2):7843-8.
Gao Z, Xiao T, Fan W. Hybrid differential evolution and Nelder–Mead algorithm with re-optimization. Soft Comput. 2011;15(3):581-94.
Schutte JF, Groenwold AA. Sizing design of truss structures using particle swarms. Struct Multidisc Optim. 2003;25(4):261-9.
Pholdee N, Bureerat S. Hybrid real-code ant colony optimisation for constrained mechanical design. Int J Syst Sci. 2016;47(2):474-91.
Wang L, Cao Q, Zhang Z, Mirjalili S, Zhao W. Artificial rabbits optimization: a new bio-inspired meta-heuristic algorithm for solving engineering optimization problems. Eng Appl Artif Intell. 2022;114:105082.
Zhao S, Zhang T, Ma S, Chen M. Dandelion optimizer: a nature-inspired metaheuristic algorithm for engineering applications. Eng Appl Artif Intell. 2022;114:105075.
Akbari MA, Zare M, Azizipanah-abarghooee R, Mirjalili S, Deriche M. The cheetah optimizer: a nature-inspired metaheuristic algorithm for large-scale optimization problems. Sci Rep. 2022;12(1):10953.
Trojovský P, Dehghani M. Pelican optimization algorithm: a novel nature-inspired algorithm for engineering applications. Sensors. 2022;22(3):855.
Zhang J, Sanderson AC. JADE: Self-adaptive differential evolution with fast and reliable convergence performance. IEEE Congress on Evolutionary Computation; 2007 Sep 25-28; Singapore. USA: IEEE; 2007. p. 2251-8.
Tanabe R, Fukunaga A. Success-history based parameter adaptation for Differential Evolution. IEEE Congress on Evolutionary Computation; 2013 Jun 20-23; Cancun, Mexico. USA: IEEE; 2013. p. 71-8.
Tanabe R, Fukunaga A. Improving the search performance of SHADE using linear population size reduction. IEEE Congress on Evolutionary Computation (CEC); 2014 Jul 6-11; Beijing, China. USA: IEEE; 2014. p. 1658-65.
Garpinger O, Hägglund T. Software-based optimal PID design with robustness and noise sensitivity constraints. J Process Control. 2015;33:90-101.
Biertümpfel F, Pholdee N, Bureerat S, Pfifer H. Adaptive boundary sine cosine optimizer with population reduction for robustness analysis of finite time horizon systems. Appl Soft Comput. 2021;113:107900.