The influence of surface area, temperature and pretreatment on convective hot air oven drying of banana peels biomass

Main Article Content

Oluseye Omotoso Agbede
Gbemileke Raphael Eniola
Oluwafunmilayo Abiola Aworanti
Funmilayo Nihinlola Osuolale
Akeem Olatunde Arinkoola
Solomon Oluyemi Alagbe
Samuel Enahoro Agarry
Oladipupo Olaosebikan Ogunleye
Kehinde Ayoola Babatunde
Ebenezer Olujimi Dada
Odunayo Deborah Akinwumi

Abstract

Untreated banana peels biomass of 15 x 10, 30 x 20 and 60 x 40 mm sizes were dried at 60 oC while untreated and pretreated (hot water and sulphite treated) biomass of 10 x 10 mm size were dried at 80 – 140 oC, to find out the influence of surface area, pretreatment and temperature on convective hot air oven drying of the biomass. The rate of drying of banana peels increased with increasing surface area and temperature while hot water and sulphite pretreatments reduced the time needed for drying. The drying operation occurred primarily in the falling-rate phase. Effective moisture diffusivities for the drying operations were in the range 5.19 x 10-10 – 1.55 x 10-8 m2 s-1. The activation energies for drying untreated, sulphite treated and hot water treated peels were 24.7, 21.4 and 21.3 kJ mol-1, respectively. The biomass drying kinetics was well described by the Weibull model. Specific energies needed for drying the 15 x 10, 30 x 20 and 60 x 40 mm banana peels biomass at 60 oC were 157.9 – 335.6 kWh/kg while those required for drying both untreated and pretreated 10 x 10 mm sized banana peels biomass at 80 – 140 oC were 33.5 – 93.9 kWh/kg. The rate of drying banana peels in hot air oven can be considerably improved and the energy needed for drying appreciably reduced by increasing the peel surface area, drying at higher temperatures and pretreating the biomass with hot water or sulphite solution.

Article Details

How to Cite
Agbede, O. O., Eniola, G. R. ., Aworanti, O. A., Osuolale, F. N. ., Arinkoola, A. O. ., Alagbe, S. O. ., Agarry, S. E. ., Ogunleye, O. O. ., Babatunde, K. A. ., Dada, E. O. ., & Akinwumi, O. D. . (2023). The influence of surface area, temperature and pretreatment on convective hot air oven drying of banana peels biomass. Engineering and Applied Science Research, 50(5), 420–439. Retrieved from https://ph01.tci-thaijo.org/index.php/easr/article/view/251595
Section
ORIGINAL RESEARCH
Author Biography

Funmilayo Nihinlola Osuolale, Department of Chemical Engineering, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria

 

 

References

Väisänen T, Haapala A, Lappalainen R, Tomppo L. Utilization of agricultural and forest industry waste and residues in natural fiber-polymer composites: a review. Waste Manage. 2016;54:62-73.

Rago YP, Mohee R, Surroop D. A review of thermochemical technologies for the conversion of waste biomass to biofuel and energy in developing countries. In: Leal Filho W, Surroop D, editors. The Nexus: Energy, Environment and Climate Change. Green Energy and Technology. Cham: Springer; 2018. p. 127-43.

Sadh PK, Duhan S, Duhan JS. Agro-industrial wastes and their utilization using solid state fermentation: a review. Bioresour Bioprocess. 2018;5:1-15.

Anastopoulos I, Pashalidis I, Hosseini-Bandegharaei A, Giannakoudakis DA, Robalds A, Usman M, et al. Agricultural biomass/waste as adsorbents for toxic metal decontamination of aqueous solutions. J Mol Liq. 2019;295:111684.

Riedel SL, Brigham C. Polymers and Adsorbents from Agricultural Waste. In: Simpson BK, Aryee ANA, Toldrá F, editors. Byproducts from Agriculture and Fisheries: Adding Value for Food, Feed, Pharma, and Fuels. Hoboken: John Wiley & Sons; 2019. p. 523-44.

Dai Y, Sun Q, Wang W, Lu L, Liu M, Li J, et al. Utilizations of agricultural waste as adsorbent for the removal of contaminants: a review. Chemosphere. 2018;211:235-53.

Kainthola J, Kalamdhad AS, Goud VV. A review on enhanced biogas production from anaerobic digestion of lignocellulosic biomass by different enhancement techniques. Process Biochem. 2019;84:81-90.

Simmonds NW. The evolution of the bananas. London: Longman; 1962.

Mohapatra D, Mishra S, Singh CB, Jayas DS. Post-harvest processing of banana: opportunities and challenges. Food Bioprocess Technol. 2011;4:327-39.

FAO. Banana facts and figures. 2020 [cited 2020 Jun 9]. Available from: https://www.fao.org/economic/est/est-commodities/oilcrops/bananas/bananafacts/en/.

Fernandes ERK, Marangoni C, Souza O, Sellin N. Thermochemical characterization of banana leaves as a potential energy source. Energy Convers Manag. 2013;75:603-8.

Padam BS, Tin HS, Chye FY, Abdullah MI. Banana by-products: an under-utilized renewable food biomass with great potential. J Food Sci Technol. 2014;51:3527-45.

Guerrero AB, Aguado PL, Sánchez J, Curt MD. GIS-Based assessment of banana residual biomass potential for ethanol production and power generation: a case study. Waste Biomass Valor. 2016;7:405-15.

Pathak PD, Mandavgane SA, Kulkarni BD. Valorization of banana peel: a biorefinery approach. Rev Chem Eng. 2016;32(6): 651-66.

Ahmad T, Danish M. Prospects of banana waste utilization in wastewater treatment: a review. J Environ Manage. 2018;206:330-48.

Ajila CM, Brar SK, Verma M, Tyagi RD, Godbout S, Valéro JR. Bio-processing of agro-byproducts to animal feed. Crit Rev Biotechnol. 2012;32:382-400.

Mohapatra D, Mishra S, Sutar N. Banana and its by-product utilisation: an overview. J Sci Ind Res. 2010;69:323-9.

Anwar J, Shafique U, Zaman W, Salman M, Dar A, Anwar S. Removal of Pb(II) and Cd(II) from water by adsorption on peels of banana. Bioresour Technol. 2010;101:1752-5.

Anastopoulos I, Kyzas GZ. Agricultural peels for dye adsorption: a review of recent literature. J Mol Liq. 2014;200:381-9.

El-Din GA, Amer AA, Malsh G, Hussein M. Study on the use of banana peels for oil spill removal. Alex Eng J. 2018;57(3):2061-8.

Mahindrakar KV, Rathod VK. Utilization of banana peels for removal of strontium (II) from water. Environ Technol Innov. 2018;11:371-83.

Wilaipon P. The effects of briquetting Pressure on banana peel briquettes and the banana waste in northern Thailand. Am J Appl Sci. 2009;6(1):167-71.

Waghmare AG, Arya SS. Utilization of unripe banana peel waste as feedstock for ethanol production. Bioethanol. 2019;2(1):146-56.

Oberoi HS, Vadlani PV, Saida L, Bansal S, Hughes JD. Ethanol production from banana peels using statistically optimized simultaneous saccharification and fermentation process. Waste Manage. 2011;31(7):1576-84.

Gebregergs A, Gebresemati M, Sahu O. Industrial ethanol from banana peels for developing countries: response surface methodology. Pac Sci Rev A: Nat Sci Eng. 2016;18(1):22-9.

Gumisiriza R, Hawumba JF, Okure M, Hensel O. Biomass waste-to-energy valorization technologies: a review case for banana processing in Uganda. Biotechnol Biofuels. 2017;10:1-29.

Achinas S, Krooneman J, Euverink GJW. Enhanced biogas production from the anaerobic batch treatment of banana peels. Engineering. 2019;5(5):970-8.

Kwon D, Lee SS, Jung S, Park YK, Tsang YF, Kwon EE. CO2 to fuel via pyrolysis of banana peel. Chem Eng J. 2019;392:123774.

Tahir MH, Zhao Z, Ren J, Rasool T, Naqvi SR. Thermo-kinetics and gaseous product analysis of banana peel pyrolysis for its bioenergy potential. Biomass Bioenerg. 2019;122:193-201.

He J, Yang Z, Xiong S, Guo M, Yan Y, Ran J, et al. Experimental and thermodynamic study of banana peel non-catalytic gasification characteristics. Waste Manage. 2020;113:369-78.

Karimibavani B, Sengul AB, Asmatulu E. Converting briquettes of orange and banana peels into carbonaceous materials for activated sustainable carbon and fuel sources. Energ Ecol Environ. 2020;5:161-70.

Selvarajoo A, Muhammad D, Arumugasamy SK. An experimental and modelling approach to produce biochar from banana peels through pyrolysis as potential renewable energy resources. Model Earth Syst Environ. 2020;6:115-28.

Ramli S, Alkarkhi AFM, Yong YS, Min-Tze L, Easa AM. Effect of banana pulp and peel flour on physicochemical properties and in vitrostarch digestibility of yellow alkaline noodles. Int J Food Sci Nutr. 2009;60(Sup4):326-40.

Eshak NS. Sensory evaluation and nutritional value of balady flat bread supplemented with banana peels as a natural source of dietary fiber. Ann Agric Sci. 2016;61(2):229-35.

Sharma SK, Bansal S, Mangal M, Dixit AK, Gupta RK, Mangal AK. Utilization of food processing by-products as dietary, functional, and novel fiber: a review. Crit Rev Food Sci Nutr. 2016;56(10):1647-61.

Onwuka CFI, Adetiloye PO, Afolami CA. Use of household wastes and crop residues in small ruminant feeding in Nigeria. Small Rumin Res. 1997;24(3):233-7.

Katongole CB, Sabiiti E, Bareeba F, Ledin I. Utilization of market crop wastes as animal feed in urban and peri-urban livestock production in Uganda. J Sustain Agric. 2011;35(3):329-42.

Blandon JC, Hamady GAA, Abdel-Moneim MA. The effect of partial replacement of yellow corn by banana peels with and without enzymes on broiler’s performance and blood parameters. J Anim Poult Sci. 2015;4(1):10-9.

Hassan HF, Hassan UF, Usher OA, Ibrahim AB, Tabe NN. Exploring the potentials of banana (Musa Sapietum) peels in feed formulation. Int J Adv Res Chem Sci. 2018;5(5):10-4.

Emaga TH, Robert C, Ronkart SN, Wathelet B, Paquot M. Dietary fibre components and pectin chemical features of peels during ripening in banana and plantain varieties. Bioresour Technol. 2008;99(10):4346-54.

Tibolla H, Pelissari FM, Menegalli FC. Cellulose nanofibers produced from banana peel by chemical and enzymatic treatment. LWT – Food Sci Technol. 2014;59(2):1311-8.

Tibolla, H, Pelissari FM, Martins JT, Vicente AA, Menegalli FC. Cellulose nanofibers produced from banana peel by chemical and mechanical treatments: characterization and cytotoxicity assessment. Food Hydrocoll. 2018;75:192-201.

Mitan NMN, Sa’adon MFR. Temperature effect on densification of banana peels briquette. Mater Today: Proc. 2019;19(4):1403-7.

Barskov S, Zappi M, Buchireddy P, Dufreche S, Guillory J, Gang D, et al. Torrefaction of biomass: a review of production methods for biocoal from cultured and waste lignocellulosic feedstocks. Renew Energ. 2019;142:624-42.

McKendry P. Energy production from biomass (part 3): gasification technologies. Bioresour Technol. 2002;83(1):55-63.

Hughes WEM, Larson ED. Effect of fuel moisture content on biomass-IGCC performance. J Eng Gas Turbines Power. 1998;120 (3):455-9.

Demirbas A. Effect of initial moisture content on the yields of oily products from pyrolysis of biomass. J Anal Appl Pyrolysis. 2004;71(2):803-15.

Mujumdar AS, Law CL. Drying technology: trends and applications in post-harvest processing. Food Bioprocess Technol. 2010;3:843-52.

Agbede OO, Adebiyi AO, Oke EO, Arinkoola AO, Ogunleye OO, Agarry SE, et al. Thin layer drying of orange skin paste for biofuel production: drying characteristics and mathematical modelling. Niger Res J Eng Environ Sci. 2019;4(2):578-92.

Agbede OO, Ayanniyi KJ, Babatunde KA, Osuolale FN, Oke EO, Ogunleye OO, et al. Thin layer modelling of open sun and solar drying kinetics of pulverized maize husks. J Niger Soc Chem Eng. 2020;35(1):71-83.

Simo-Tagne M, Tagne Tagne A, Ndukwu MC, Bennamoun L, Obounou Akong MB, El Marouani M, et al. Numerical study of the drying of cassava roots chips using an indirect solar dryer in natural convection. AgriEngineering. 2021;3(1):138-57.

Simo-Tagne M, Ndukwu MC. Study on the effect of conical and parabolic solar concentrator designs on hybrid solar dryers for apricots under variable conditions: a numerical simulation approach. Int J Green Energy. 2021;18(15):1613-31.

Ndukwu MC, Onyenwigwe DI, Abam F, Lamrani B, Simo-Tagne M, Bekkioui N, et al. Influence of hot water blanching and saline immersion period on the thermal effusivity and the drying kinetics of hybrid solar drying of sweet potato chips. Sol Energy. 2022;240:176-92.

Simo-Tagne M, Etala HDT, Tagne Tagne A, Ndukwu MC, El Marouani M. Energy, environmental and economic analyses of an indirect cocoa bean solar dryer: a comparison between natural and forced convections. Renew Energ. 2020;187:1154-72.

Ihediwa VE, Ndukwu MC, Abada UC, Ekop IE, Bennamoun L, Simo-Tagne M, et al. Optimization of the energy consumption, drying kinetics and evolution of thermo-physical properties of drying of forage grass for haymaking. Heat Mass Transfer. 2022;58:1187-206.

Maskan A, Kaya S, Maskan M. Hot air and sun drying of grape leather (pestil). J Food Eng. 2002;54(1):81-8.

Agbede OO, Oke EO, Akinfenwa SI, Wahab KT, Ogundipe S, Aworanti OA, et al. Thin layer drying of green microalgae (Chlorella sp.) paste biomass: drying characteristics, energy requirement and mathematical modeling. Bioresour Technol Rep. 2020;11:100467.

Onwude DI, Hashim N, Janius RB, Nawi NM, Abdan K. Modeling the thin-layer drying of fruits and vegetables: a review. Compr Rev Food Sci Food Saf. 2016;15(3):599-618.

Agbede OO, Ayanniyi KJ, Osuolale FN, Oke EO, Agarry SE, Ogunleye OO, et al. Hot air oven drying of maize husks biomass: effects of bed depth and temperature on drying kinetics, moisture diffusivity and energy requirement. Niger Res J Eng Environ Sci. 2019;4(2):991-1005.

Agarry SE, Osuolale FN, Agbede OO, Ajani AO, Afolabi TJ, Ogunleye OO, et al. Transport phenomena, thermodynamic analyses, and mathematical modelling of okra convective cabinet-tray drying at different drying conditions. Eng Appl Sci Res. 2021;48(5):637-56.

Agarry SE, Osuolale FN, Agbede OO, Ajani A, Afolabi TJ, Ogunleye OO, et al. Mass transfer, energy-exergy analysis, and mathematical modeling of chili pepper during drying. Iran J Chem Chem Eng. 2022;41(7):2468-95.

Deng LZ, Mujumdar AS, Zhang Q, Yang XH, Wang J, Zheng ZA, et al. Chemical and physical pretreatments of fruits and vegetables: effects on drying characteristics and quality attributes – a comprehensive review. Crit Rev Food Sci Nutr. 2019;59(9):1408-32.

Sankat C, Castaign F, Maharaj R. The air drying behaviour of fresh and osmotically dehydrated banana slices. Int J Food Sci Technol. 1996;31(2):123-35.

Demirel D, Turhan M. Air-drying behavior of Dwarf Cavendish and Gros Michel banana slices. J Food Eng. 2003;59(1):1-11.

Nguyen MH, Price WE. Air-drying of banana: Influence of experimental parameters, slab thickness, banana maturity and harvesting season. J Food Eng. 2007;79(1):200-7.

Prachayawarakorn S, Tia W, Plyto N, Soponronnarit S. Drying kinetics and quality attributes of low-fat banana slices dried at high temperature. J Food Eng. 2008;85(4):509-17.

Doymaz I. Evaluation of mathematical models for prediction of thin-layer drying of banana slices. Int J Food Prop. 2010;13(3):486-97.

Thuwapanichayanan R, Prachayawarakorn S, Kunwisawa J, Soponronnarit S. Determination of effective moisture diffusivity and assessment of quality attributes of banana slices during drying. LWT - Food Sci Technol. 2011;44(6):1502-10.

da Silva WP, e Silva CMDPS, Gama FJA, Gomes JP. Mathematical models to describe thin-layer drying and to determine drying rate of whole bananas. J Saudi Soc Agric. 2014;13(1):67-74.

Khawas P, Dash KK, Das AJ, Deka SC. Drying characteristics and assessment of physicochemical and microstructural properties of dried culinary banana slices. Int J Food Eng. 2015;11(5):667-78.

Seyedabadi E, Khojastehpour M, Abbaspour-Fard MH. Online measuring of quality changes of banana slabs during convective drying. Eng Agric Environ Food. 2019;12(1):111-7.

Takougnadi E, Tchamye Boroze TE, Azouma OY. Effects of drying conditions on energy consumption and the nutritional and organoleptic quality of dried bananas. J Food Eng. 2020;268:109747.

Liu C, Ngo HH, Guo W, Tung KL. Optimal conditions for preparation of banana peels, sugarcane bagasse and watermelon rind in removing copper from water. Bioresour Technol. 2012;119:349-54.

Vu HT, Scarlett CJ, Vuong QV. Effects of drying conditions on physicochemical and antioxidant properties of banana (Musa cavendish) peels. Dry Technol. 2017;35(9):1141-51.

Akpinar EK, Bicer Y. Mathematical modelling of thin layer drying process of long green pepper in solar dryer and under open sun. Energy Convers Manag. 2008;49(6):1367-75.

Erbay Z, Icier F. A review of thin layer drying of foods: theory, modeling, and experimental results. Crit Rev Food Sci Nutr. 2010;50(5):441-64.

Kucuk H, Midilli A, Kilic A, Dincer I. A review on thin-layer drying-curve equations. Dry Technol. 2014;32(7):757-73.

Ajuebor F, Aworanti OA, Agbede OO, Agarry SE, Afolabi TJ, Ogunleye OO. Drying process optimization and modelling the drying kinetics and quality attributes of dried chili pepper (Capsicum frutescens L.). Trends Sci. 2022;19(17):5752.

Crank J. The mathematics of diffusion. 2nd ed. London: Oxford University Press; 1975.

Di Scala K, Crapiste G. Drying kinetics and quality changes during drying of red pepper. LWT – Food Sci Technol. 2008;41 (5):789-95.

Tunde-Akintunde TY, Ogunlakin GO. Influence of drying conditions on the effective moisture diffusivity and energy requirements during the drying of pretreated and untreated pumpkin. Energy Convers Manag. 2011;52(2):1107-13.

Doymaz I, Özdemir Ö. Effect of air temperature, slice thickness and pretreatment on drying and rehydration of tomato. Int J Food Sci Technol. 2014;49(2):558-64.

Motevali A, Minaei S, Banakar A, Ghobadian B, Khoshtaghaza MH. Comparison of energy parameters in various dryers. Energy Convers Manag. 2014;87:711-25.

Tunde-Akintunde TY. Effect of pretreatments on drying characteristics and energy requirements of plantain (Musa AAB). J Food Process Preserv. 2014;38(4):1849-59.

Aghbashlo M, Kianmehr MH, Samimi-Akhijahani H. Influence of drying conditions on the effective moisture diffusivity, energy of activation and energy consumption during the thin-layer drying of berberis fruit (Berberidaceae). Energy Convers Manag. 2008;49(10):2865-71.

Motevali A, Minaei S, Khoshtagaza MH. Evaluation of energy consumption in different drying methods. Energy Convers Manag. 2011;52(2):1192-9.

Motevali A, Minaei S, Khoshtaghaza MH, Amirnejat H. Comparison of energy consumption and specific energy requirements of different methods for drying mushroom slices. Energy. 2011;36(11):6433-41.

Torki-Harchegani M, Ghanbarian D, Ghasemi Pirbalouti A, Sadeghi M. Dehydration behaviour, mathematical modelling, energy efficiency and essential oil yield of peppermint leaves undergoing microwave and hot air treatments. Renew Sust Energ Rev. 2016;58:407-18.

Tohidi M, Sadeghi M, Torki-Harchegani M. Energy and quality aspects for fixed deep bed drying of paddy. Renew Sust Energ Rev. 2017;70:519-28.

Naghavi Z, Moheb A, Ziaei-rad S. Numerical simulation of rough rice drying in a deep-bed dryer using non-equilibrium model. Energy Convers Manag. 2010;51(2):258-64.

Weibull W. A statistical distribution of wide applicability. ASME J Appl Mech. 1951;18:293-7.

Sharaf-Eldeen YI, Blaisdell JL, Hamdy MY. A model for ear corn drying. Trans ASAE. 1980;23(5):1261-65.

Midilli A, Kucuk H, Yapar Z. A new model for single-layer drying. Dry Technol. 2002;20(7):1503-13.

White GM, Bridges TC, Loewer OJ, Ross IJ. Seed coat damage in thin layer drying of soybeans as affected by drying conditions. Trans ASAE. 1980;23(1):224-7.

Chandra PK, Singh RP. Applied numerical methods for food and agricultural engineers. Boca Raton: CRC Press; 1995.

Page GE. Factors ınfluencing the maximum rate of air drying shelled corn in thin-layers [Thesis]. West Lafayette: Purdue University; 1949.

Wang CY, Singh RP. A single layer drying equation for rough rice. ASAE Paper No. 3001. Michigan: ASAE; 1978.

Karathanos VT. Determination of water content of dried fruits by drying kinetics. J Food Eng. 1999;39(4):337-44.

Henderson SM. Progress in developing the thin layer drying equation. Trans ASAE. 1974;17:1167-72.

Glenn TL. Dynamic analysis of grain drying system [Thesis]. Columbus: Ohio State University; 1978.

Verma LR, Bucklin RA, Ednan JB, Wratten FT. Effects of drying air parameters on rice drying models. Trans ASAE. 1985;28(1):296-301.

Henderson SM, Pabis S. Grain drying theory I: temperature effect on drying coefficient. J Agric Eng Res. 1961;6:169-74.

Kaseem AS. Comparative studies on thin layer drying models for wheat. 13th International Congress on Agricultural Engineering; 1998 Feb 2-6; Rabat, Morocco. Rabat: ANAFID; 1998.

Akpinar EK. Mathematical modelling of thin layer drying process under open sun of some aromatic plants. J Food Eng. 2006;77(4):864-70.

Holman JP. Experimental methods for engineers. 7th ed. New York: McGraw-Hill; 2001.

Akpinar EK. Drying of mint leaves in a solar dryer and under open sun: Modelling, performance analyses. Energy Convers Manag. 2010;51(12):2407-18.

Ertekin C, Yaldiz O. Drying of eggplant and selection of a suitable thin layer drying model. J Food Eng. 2004;63(3):349-59.

Falade KO, Solademi OJ. Modelling of air drying of fresh and blanched sweet potato slices. Int J Food Sci Technol. 2010;45(2):278-88.

Kingsly RP, Goyal RK, Manikantan MR, Ilyas SM. Effects of pretreatments and drying air temperature on drying behavior of peach slice. Int J Food Sci Technol. 2007;42(1):65-9.

Xiao HW, Pang CL, Wang LH, Bai JW, Yang WX, Gao ZJ. Drying kinetics and quality of Monukka seedless grapes dried in an air-impingement jet dryer. Biosyst Eng. 2010;105(2):233-40.

Zhu A, Shen X. The model and mass transfer characteristics of convection drying of peach slices. Int J Heat Mass Transf. 2014;72:345-51.

Olanipekun BF, Tunde-Akintunde TY, Oyelade OJ, Adebisi MG, Adenayan TA. Mathematical modeling of thin-layer pineapple drying. J Food Process Preserv. 2015;39(6):1431-41.

Göğüş F, Maskan M. Air drying characteristics of solid waste (pomace) of olive oil processing. J Food Eng. 2006;72(4):378-82.

Motevali A, Tabatabaei SR. A comparison between pollutants and greenhouse gas emissions from operation of different dryers based on energy consumption of power plants. J Clean Prod. 2017;154:445-61.

Kaveh M, Chayjan RA, Taghinezhad E, Sharabiani VR, Motevali A. Evaluation of specific energy consumption and GHG emissions for different drying methods (case study: Pistacia Atlantica). J Clean Prod. 2020;259:120963.

Alibas I. Energy consumption and colour characteristics of nettle leaves during microwave, vacuum and convective drying. Biosyst Eng. 2007;96(4):495-502.

Rasouli M, Seiiedlou S, Ghasemzadeh HR, Nalbandi H. Convective drying of garlic (Allium sativum L.): part I: drying kinetics, mathematical modeling and change in color. Aust J Crop Sci. 2011;5(13):1707-14.

Vega-Ga´lvez A, Lara E, Flores V, Scala KD, Lemus-Mondaca R. Effect of selected pretreatments on convective drying process of blueberries (var. O’neil). Food Bioprocess Technol. 2012;5(7):2797-804.

Doymaz I. Evaluation of some thin-layer drying models of persimmon slices (Diospyros kaki L.). Energy Convers Manag. 2012;56:199-205.