Normal pressure effects upon mechanical properties and microstructure of Ti-6Al-4V and AA2024 rotary friction welds
Main Article Content
Abstract
The aim of this work is to investigate the effect of normal pressure upon the mechanical properties and their related microstructures of the similar Ti-6Al-4V and AA2024 Rotary Friction Welding (RFW) joints. The main characteristic of this process is the use of friction to generate adequate energy and raise temperature locally in order to create favorable conditions for welding at the interface between two parts. Successful welds were produced showing, among many others, that the fracture occurres at the weld interface for the AA2024 alloy, hence its low tensile strength. However, the fracture occurres outside the weld interface for the Ti-6Al-4V alloy, which indicates that the weld joint is more resistant than the base metal. The microscopic observation of the fracture surfaces of the AA2024 samples exhibits a mixture of morphologies with a majority of rough cupular surfaces, indicating a dominant ductile fracture mode. For the Ti-6Al-4V RFW joints, cupules of different sizes are observed over the entire surface that also exhibits a ductile fracture mode.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
American Welding Society. Recommended practices for friction welding. An American National Standard ANSI/AWS C6.1-89. Miami: American Welding Society; 2009.
Li W, Vairis A, Preuss M, Ma T. Linear and rotary friction welding review. Int Mater Rev. 2016;61(2):71-100.
Meisnar M, Baker S, Bennett JM, Bernad A, Mostafa A, Resch S, et al. Microstructural characterisation of rotary friction welded AA6082 and Ti-6Al-4V dissimilar joints. Mater Des. 2017;132:188-97.
Dressler U, Biallas G, Mercado UA. Friction stir welding of titanium alloy TiAl6V4 to aluminium alloy AA2024-T3. Mater Sci Eng A. 2009;526(1-2):113-7.
Avinash M, Chaitanya GV, Giri DK, Upadhya S, Muralidhara BK. Microstructure and mechanical behaviuor of rotary friction welded titanium alloys. Int J Mater Metall Eng. 2007;1(11):641-3.
Nu HT, Loc NH, Minh LP. Influence of the rotary friction welding parameters on the microhardness and joint strength of Ti6Al4V alloys. Proc Inst Mech Eng B J Eng Manuf. 2021;235(5):795-805.
Jin F, Rao H, Wang Q, Wen G, Liu P, Liu J, et al. Heat-pattern induced non-uniform radial microstructure and properties of Ti-6Al-4V joint prepared by rotary friction welding. Mater Charact. 2023;195:112536.
Zulu M, Mashinini M. Optimisation of the rotary friction welding process of titanium alloy rods. MATEC Web Conf. 2021;347:1-12.
Vikas KS, Rao KS, Rahul, Reddy GM, Ramana VV. Influence of heat treatments on microstructural and mechanical properties of grade 5 titanium friction welds. Eng Res Express. 2022;4(2):025053.
My Nu HT, Le TT, Minh LP, Loc NH. A study on rotary friction welding of titanium alloy (Ti6Al4V). Adv Mater Sci Eng. 2019;2019:1-10.
Sankar GS, Karthik GM, Mohammad A, Kumar R, Janaki Ram GD. Friction welding of electron beam melted γ-TiAl alloy Ti–48Al–2Cr–2Nb. Trans Indian Inst Met. 2019;72(1):35-46.
Hynes NR, Velu PS. Effect of rotational speed on Ti-6Al-4V-AA 6061 friction welded joints. J Manuf Process. 2018;32:288-97.
Li P, Wang S, Dong H, Wen G, Yu F, Ma Y, et al. Effect of inhomogeneous microstructure evolution on the mechanical properties and corrosion behavior of rotary friction welded AA2024 joints. Mater Charact. 2021;178:111306.
Li P, Wang S, Xia Y, Hao X, Lei Z, Dong H. Inhomogeneous microstructure and mechanical properties of rotary friction welded AA2024 joints. J Mater Res Technol. 2020;9(3):5749-60.
Immarigeon JP, Holt RT, Koul AK, Zhao L, Wallace W, Beddoes JC. Lightweight materials for aircraft applications. Mater Charact. 1995;35(1):41-67.
May A, Belouchrani MA, Taharboucht S, Boudras A. Influence of heat treatment on the fatigue behaviour of two aluminium alloys 2024 and 2024 plated. Procedia Eng. 2010;2(1):1795-804.
May A, Belouchrani MA, Manaa A, Bouteghrine Y. Influence of fatigue damage on the mechanical behaviour of 2024-T3 aluminum alloy. Procedia Eng. 2011;10:798-806.
Zhang L, Liu X, Wang L, Wu S, Fang H. A model of continuum damage mechanics for high cycle fatigue of metallic materials. Trans Nonferrous Met Soc China. 2012;22(11):2777-82.
May A, Taleb L, Belouchrani MA. Analysis of the cyclic behavior and fatigue damage of extruded AA2017 aluminum alloy. Mater Sci Eng A. 2013;571:123-36.
Bois-Brochu A, Blais C, Goma FAT, Larouche D, Boselli J, Brochu M. Characterization of Al–Li 2099 extrusions and the influence of fiber texture on the anisotropy of static mechanical properties. Mater Sci Eng A. 2014;597:62-9.
May A. On the origins of the anisotropic mechanical behaviour of extruded AA2017 aluminium alloy. Bull Mater Sci. 2017;40(2):395-406.
Lakache HE, May A, Badji R. Rotary friction welding parameters effects upon mechanical properties and microstructure of AA2024 weld joints. Eng Sol Mech. In press 2023.
Li X, Li J, Jin F, Xiong J, Zhang F. Effect of rotation speed on friction behavior of rotary friction welding of AA6061-T6 aluminum alloy. Weld World. 2018;62(5):923-30.
Hariprasath P, Sivaraj P, Balasubramanian V. A critical assessment on rotary friction welded high strength armor grade aluminum alloy joints. Phys Metals Metallogr. 2021;122(13):1401-8.
Dang Z, Qin G, Ma H. Interfacial microstructural characterization and mechanical properties of inertia friction welding of 2219 aluminum alloy to 304 stainless steel. Mater Sci Eng A. 2021;822:141689.
Dong H, Yang J, Li Y, Xia Y, Hao X, Li P, et al. Evolution of interface and tensile properties in 5052 aluminum alloy/304 stainless steel rotary friction welded joint after post-weld heat treatment. J Manuf Process. 2020;51:142-50.
Sharma C, Dwivedi DK, Kumar P. Effect of welding parameters on microstructure and mechanical properties of friction stir welded joints of AA7039 aluminum alloy. Mater Des (1980-2015). 2012;36:379-90.
Trimble D, O’Donnell GE, Monaghan J. Characterisation of tool shape and rotational speed for increased speed during friction stir welding of AA2024-T3. J Manuf process. 2015;17:141-50.
Sundaram NS, Murugan N. Dependence of ultimate tensile strength of friction stir welded AA2024-T6 aluminium alloy on friction stir welding process parameters. Mechanika. 2009;78(4):17-24.
Mimouni O, Badji R, Kouadri-David A, Gassaa R, Chekroun N, Hadji M. Microstructure and mechanical behavior of friction-stir-welded 2017A-T451 aluminum alloy. Trans Indian Inst Met. 2019;72(7):1853-68.
International Organization for Standardization. EN ISO 6892-1:2016 - Metallic materials - Tensile testing – Part 1: Method of test at room temperature. Brussels: European Committee for Standardization; 2016.
Combres Y, Champin B. Recent developments of the titanium industry and research in France. In: Blenkinsop PA, Evans WJ, Flower HM, editors. Titanium '95: Science and Technology; 1995 Oct 22-26; Birmingham, United Kingdom. London: Institute of Materials; 1996. p. 11-20.
Al-Rubaie KS, Melotti S, Rabelo A, Paiva JM, Elbestawi MA, Veldhuis SC. Machinability of SLM-produced Ti6Al4V titanium alloy parts. J Manuf Process. 2020;57:768-86.
Castro R, Seraphin L. Contribution à l’étude métallographique et structurale de l’alliage de titane ta6v. Mem Sci Rev Met. 1966; 63:1025-58. (In French)
Murugan SS, Sathiya P, Haq AN. Continuous drive dissimilar friction welding of wrought aluminium AA6063-T6 and austenitic stainless steel AISI304L with different welding methods and welding trials. Kovove Mater Metal Mater. 2021;59(3):161-9.
Kimura M, Choji M, Kusaka M, Seo K, Fuji A. Effect of friction welding conditions and aging treatment on mechanical properties of A7075-T6 aluminium alloy friction joints. Sci Technol Weld Join. 2005;10(4):406-12.
Wang GL, Li JL, Wang WL, Xiong JT, Zhang FS. Rotary friction welding on dissimilar metals of aluminum and brass by using pre-heating method. Int J Adv Manuf Technol. 2018;99(5):1293-300.
Vairis A, Papazafeiropoulos G, Tsainis AM. A comparison between friction stir welding, linear friction welding and rotary friction welding. Adv Manuf. 2016;4(4):296-304.