Experimental and numerical investigation of 2-dimensional heat pipe wall temperature profile

Main Article Content

Kittinan Wansasueb
Pitak Promthaisong
Bopit Bubphachot
Adisak Pattiya
Teerapat Chompookham
Sampan Rittidech
Narin Siriwan

Abstract

This study focuses on the numerical validation of a two-dimensional model of a heat pipe's temperature profile under transient conditions. The model was constructed from copper, and the finite difference method was employed as the numerical solver. The study recorded the temperature distribution at the pipe wall in the evaporator, adiabatic and condenser sections, with a focus on the initial temperatures of the evaporator section. The temperatures at the pipe wall were compared with the numerical computation solutions. The results showed an agreement between the experimental and numerical temperature profiles with percentage error between 4.463 and 5.900 %.

Article Details

How to Cite
Wansasueb, K., Promthaisong, P., Bubphachot, B. ., Pattiya, A., Chompookham, T., Rittidech, S., & Siriwan, N. (2023). Experimental and numerical investigation of 2-dimensional heat pipe wall temperature profile. Engineering and Applied Science Research, 50(5), 458–467. Retrieved from https://ph01.tci-thaijo.org/index.php/easr/article/view/251045
Section
ORIGINAL RESEARCH

References

Faghri A. Heat pipe science and technology. 2nd ed. Global Digital Press; 2016.

Musediq AS, Yahaya A, Olanrewaju BO, Babatunde OA, Solomon OG. Computational analysis of water-based copper oxide nanofluid properties and performance in a double-pipe small-scale heat exchanger. Eng Appl Sci Res. 2021;48(2):161-70.

Prasopsuk C, Hoonpong P, Skullong S, Promvonge P. Experimental investigation of thermal performance enhancement in tubular heat exchanger fitted with rectangular-winglet-tape vortex generator. KKU Eng J. 2016;43(S2):279-82.

Srimuang W, Khantikomol P, Krittacom B. An experimental investigation of effectiveness of a closed-end flat heat pipe heat exchanger (CEFHPHE). KKU Eng J. 2013;40(1):21-7.

Xia G, Zhuang D, Ding G, Lu J. A quasi-three-dimensional distributed parameter model of micro-channel separated heat pipe applied for cooling telecommunication cabinets. Appl Energy. 2020;276:115544.

Mozafarie SS, Javaherdeh K, Ghanbari O. Numerical simulation of nanofluid turbulent flow in a double‑pipe heat exchanger equipped with circular fins. J Therm Anal Calorim. 2021;143:4299-311.

Gawecka KA, Taborda DMG, Potts DM, Sailer E, Cui W, Zdravković L. Finite-element modeling of heat transfer in ground source energy systems with heat exchanger pipes. Int J Geomech. 2020;20(5):1-14.

Xia G, Zhuang D, Ding G, Lu J, Han W, Qi H. A distributed parameter model for multi-row separated heat pipe with micro-channel heat exchangers. Appl Therm Eng. 2021;182:116113.

Altun AH, Bilir S, Ates A. Transient conjugated heat transfer in thermally developing laminar flow in thick-walled pipes and mini-pipes with time periodically varying wall temperature boundary condition. Int J Heat Mass Transf. 2016;92:643-57.

Enke G, Júnior JB, Vlassov V. Transient response of an axially-grooved aluminum-ammonia heat pipe with the presence of non-condensable gas. Appl Therm Eng. 2021;183:116135.

Huang Y, Chen Q. A numerical model for transient simulation of porous wicked heat pipes by lattice Boltzmann method. Int J Heat Mass Transf. 2017;105:270-8.

Joung W, Kim YG, Lee J. Transient characteristics of a loop heat pipe-based hydraulic temperature control technique. Int J Heat Mass Transf. 2016;103:125-32.

Wang G, Liu M, Zhang D, Qiu S, Su GH, Tian W. Experimental study on transient performance of heat pipe-cooled passive residual heat removal system of a molten salt reactor. Prog Nucl Energy. 2020;118:103113.

Xie Y, Zhou Y, Wen D, Wu H, Haritos G, Zhang H. Experimental investigation on transient characteristics of a dual compensation chamber loop heat pipe subjected to acceleration forces. Appl Therm Eng. 2018;130:169-84.

Ismail NR, Soeparman S, Widhiyanuriyawan D, Wijayanti W. Temperature distribution and evaporation rate in porous media. J Southwest Jiaotong Univ. 2020;55(3):1-12.

Siriwan N, Chompookham T, Ding Y, Rittidech S. Mathematical model to predict heat transfer in transient condition of helical oscillating heat pipe. Songklanakarin J Sci Technol. 2017;39(6):765-72.

Siriwan N, Chompookham T, Ding Y, Rittidech S. Heat transfer predictions for helical oscillating heat pipe heat exchanger: transient condition. J Mech Sci Technol. 2017;31:3553-62.

Ma T, Wang X, Zhu T, Li Y. Operation characteristics of a high temperature special shaped heat pipe used in solar thermochemical reactors. Heat Transf Eng. 2019;40(3-4):238-46.

Orr B, Singh R, Akbarzadeh A, Mochizuki M. Operating characteristics of naphthalene heat pipes. Front Heat Mass Transf. 2019;13:1-7.

Auntaisong P, Thinvongpituk C, Sopakayang R, Poonaya S. The study of temperature distribution in steel rods welded by friction welding using computer. KKU Eng J. 2015;42(2):173-83. (In Thai)

Ahmad F, Nazeer M, Saeed M, Saleem A, Ali W. Heat and mass transfer of temperature-dependent viscosity models in a pipe: effects of thermal radiation and heat generation. Zeitschrift für Naturforschung A. 2020;75(3):225-39.

Chen G, Tang Y, Wan Z, Zhong G, Tang H, Zeng G. Heat transfer characteristic of an ultra-thin flat plate heat pipe with surface-functional wicks for cooling electronics. Int Commun Heat Mass Transf. 2019;100:12-9.

Matao P, Reddy BP, Sunzu J. Hall and rotation effects on radiating and reacting MHD flow past an accelerated permeable plate with soret and dufour effects. Trends Sci. 2022;19(5):2879.

Sinha S, Yadav RS. MHD mixed convective slip flow along an inclined porous plate in presence of viscous dissipation and thermal radiation. Trends Sci. 2022;19(4):2685.

Kolliyil JJ, Yarramsetty N, Balaji C. Numerical modeling of a wicked heat pipe using lumped parameter network incorporating the marangoni effect. Heat Transf Eng. 2020;42(9):787-801.

Koito A. Numerical analyses on vapor pressure drop in a centered-wick ultra-thin heat pipe. Front Heat Mass Transf. 2019;13:1-6.

Cui Y, Yu H, Wang H, Wang Z, Yan X. The numerical modeling of the vapor bubble growth on the silicon substrate inside the flat plate heat pipe. Int J Heat Mass Transf. 2020;147:118945.

Zhang H, Shi Z, Liu K, Shao S, Jin T, Tian C. Experimental and numerical investigation on a CO2 loop thermosyphon for free cooling of data centers. Appl Therm Eng. 2017;111:1083-90.

Siriwan N, Bubphachot B, Eiamsa-ard S, Wongcharee K, Chompookham T, Promthaisong P. 3D Simulation on turbulent flow and heat transfer behaviors in a five-start corrugated tube: effect of depth ratio and tube modification. Eng Appl Sci Res. 2021;48(6):694-703.

Ali N, Nazeer M, Javed T, Abbas F. A numerical study of micropolar flow inside a lid-driven triangular enclosure. Meccanica. 2018;53:3279-3299.

Nazeer M, Ali N, Javed T. Numerical simulation of MHD flow of micropolar fluid inside a porous inclined cavity with uniform and non-uniform heated bottom wall. Can J Phys. 2018;96(6):1-37.

Nazeer M, Ali N, Javed T, Nazir MW. Numerical analysis of the full MHD model with the Galerkin finite-element method. Eur Phys J Plus. 2019;134:204.

Nazeer M, Ali N, Javed T. Numerical simulations of MHD forced convection flow of micropolar fluid inside a right-angled triangular cavity saturated with porous medium: effects of vertical moving wall. Can J Phys. 2019;97(1):1-13.

Nazeer M, Ali N, Javed T. Effects of moving wall on the flow of micropolar fluid inside a right-angle triangular cavity. Int J Numer Methods Heat Fluid Flow. 2018;28(10):2404-22.

Nazeer M, Ali N, Javed T, Asghar Z. Natural convection through spherical particles of a micropolar fluid enclosed in a trapezoidal porous container. Eur Phys J Plus. 2018;133:423.

Nazeer M, Ali N, Javed T. Natural convection flow of micropolar fluid inside a porous square conduit: effects of magnetic field, heat generation/absorption, and thermal radiation. J Porous Media. 2018;21(10):953-75.

Ali N, Nazeer M, Javed T, Siddiqui MA. Buoyancy-driven cavity flow of a micropolar fluid with variably heated bottom wall. Heat Transf Res. 2018;49(5):457-81.

Nazeer M, Ali N, Javed T, Razzaq M. Finite element simulations for energy transfer in a lid-driven porous square container filled with micropolar fluid: impact of thermal boundary conditions and Peclet number. Int J Hydrog Energy. 2019;44(14):7656-66.

Ali N, Nazeer M, Javed T. Finite element simulations of free convection flow inside a porous inclined cavity filled with micropolar fluid. J Porous Media. 2021;24(2):57-75.

Ali N, Nazeer M, Javed T, Razzaq M. Finite element analysis of bi-viscosity fluid enclosed in a triangular cavity under thermal and magnetic effects. Eur Phys J Plus. 2019;134:2.

Patel ED, Kumar S. Thermal performance of a single loop pulsating heat pipe with asymmetric adiabatic channel. Appl Therm Eng. 2023;219:119541.

Li G, Li J. Thermal characteristics of a flat plate pulsating heat pipe module for onsite cooling of high-power server CPUs. Therm Sci Eng Prog. 2023;37:101542.

Yang Z, Zhang Y, Bai L, Zhang H, Lin G. Experimental study on the thermal performance of an ammonia loop heat pipe using a rectangular evaporator with longitudinal replenishment. Appl Therm Eng. 2022;207:118199.

Xu H, Yang Y, Gan K, Zhang H, Gao Y, Li R, et al. Heat transfer performance of novel high temperature flat heat pipe (HTFHP) with heating power and inclination angles. Appl Therm Eng. 2023;220:119679.

Mirmanto M, Joniarta IW, Sayoga IMA, Nurpatria N, Padang YA, Yudhyadi IGNK. Effect of water volume on a thermoelectric cooler box performance. Front Heat Mass Transf. 2018;11:1-9.

Hashimoto M, Akizuki Y, Sato K, Ueno A, Nagano H. Proposal, transient model, and experimental verification of loop heat pipe as heating device for electric-vehicle batteries. Appl Therm Eng. 2022;211:118432.

Abela C, Mameli M, Nikolayev V, Filippeschi S. Experimental analysis and transient numerical simulation of a large diameter pulsating heat pipe in microgravity conditions. Int J Heat Mass Transf. 2022;187:122532.

Huaqi L, Zeyu O, Xiaoyan T, Li G, Da L, Xiaoya K, et al. The development of high temperature heat-pipe transient model for system analysis of heat pipe cooled microreactor. Prog Nucl Energy. 2022;146:104145.

Ma Y, Tian C, Yu H, Zhong R, Zhang Z, Huang S, et al. Transient heat pipe failure accident analysis of a megawatt heat pipe cooled reactor. Prog Nucl Energy. 2021;140:103904.

Zhang Z, Chai X, Wang C, Sun H, Zhang D, Tian W, et al. Numerical investigation on startup characteristics of high temperature heat pipe for nuclear reactor. Nuclear Engineering and Design. 2021;378:111180.