Changing paradigms of porous polymers in biomedical applications

Main Article Content

Santanu Chakraborty
Manami Dhibar
Kalpana Swain
Satyanarayan Pattnaik

Abstract

Porous polymers have evolved as an exciting platform for diverse biomedical applications and have provided essential technical support to industries related to pharmaceutical and biomedical engineering. The constantly expanding toolbox of polymerization reactions is continuously supplying new methods applicable for synthesizing macromolecules and providing novel macromolecular architectures. Porous polymers, both from natural and synthetic origins, have unique physicochemical properties that make them ideal for drug delivery, tissue engineering, wound healing, etc. The current review aims to investigate the various types of porous polymers for potential biomedical applications and evaluate their contributions to the various innovations made in the field of application.

Article Details

How to Cite
Chakraborty, S. ., Dhibar, M., Swain, K., & Pattnaik, S. (2023). Changing paradigms of porous polymers in biomedical applications. Engineering and Applied Science Research, 50(1), 55–62. Retrieved from https://ph01.tci-thaijo.org/index.php/easr/article/view/250568
Section
REVIEW ARTICLES

References

Ulbricht M. Advanced functional polymer membranes. Polymer. 2006;47(7):2217-62.

Staudinger H. Über Polymerisation. Ber Dtsch Chem Ges (A and B Series). 1920;53(6):1073-85. (In German)

Staudinger H. Über Isopren und Kautschuk, 33. Mitteil. Über Endgruppen im Kautschuk. Ber Dtsch Chem Ges (A and B Series). 1931;64(6):1407-08. (In German)

Phomrak S, Nimpaiboon A, Newby BMZ, Phisalaphong M. Natural Rubber latex foam reinforced with micro- and nanofibrillated cellulose via Dunlop method. Polymers. 2020;12(9):1959.

Blackley DC. Latex foam rubber. In: Polymer Latices. Dordrecht: Springer; 1997. p. 229-326.

Lee J, Cuddihy MJ, Kotov NA. Three-dimensional cell culture matrices: state of the art. Tissue Eng Part B Rev. 2008;14:61-86.

Sanders DF, Smith ZP, Guo R, Robeson LM, McGrath JE, Paul DR, et al. Energy-efficient polymeric gas separation membranes for a sustainable future: a review. Polymer. 2013;54(18):4729-61.

Ghernaout D. Reverse osmosis process membranes modeling - a historical overview. J Civ Constr Environ Eng. 2017;2(4):112-22.

Qiu S, Ben T. Porous polymers: design, synthesis and applications. Cambridge: Royal Society of Chemistry; 2016.

Mikos AG, Temenoff JS. Formation of highly porous biodegradable scaffolds for tissue engineering. Electron J Biotechnol. 2000;3(2):114-9.

Dhandayuthapani B, Yoshida Y, Maekawa T, Sakthi Kumar D. Polymeric scaffolds in tissue engineering application: a review. Int J Polym Sci. 2011;2011:1-19.

Gualandi C. Porous polymeric bioresorbable scaffolds for tissue engineering. Heidelberg: Springer; 2011.

Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials. 2006;27(18):3413-31.

Langer R. Biomaterials in drug delivery and tissue engineering: one laboratory’s experience. Acc Chem Res. 2000;33(2):94-101.

Swain K, Pattnaik S, Mallick S, Chowdary KA. Influence of hydroxypropyl methylcellulose on drug release pattern of a gastroretentive floating drug delivery system using a 32 full factorial design. Pharm Dev Technol. 2009;14(2):193-8.

Swain K, Pattnaik S, Yeasmin N, Mallick S. Preclinical evaluation of drug in adhesive type ondansetron loaded transdermal therapeutic systems. Eur J Drug Metab Pharmacokinet. 2011;36(4):237-41.

Pattnaik S, Swain K, Choudhury P, Acharya PK, Mallick S. Alfuzosin hydrochloride transdermal films: Evaluation of physicochemical, in vitro human cadaver skin permeation and thermodynamic parameters. Int Braz J Urol. 2009;35(6):716-29.

Swain K, Pattnaik S, Sahu SC, Patnaik KK, Mallick S. Drug in adhesive type transdermal matrix systems of ondansetron hydrochloride: Optimization of permeation pattern using response surface methodology. J Drug Target. 2010;18(2):106-14.

Pattnaik S, Pathak K. Mesoporous silica molecular sieve based nanocarriers: transpiring drug dissolution research. Curr Pharm Des. 2017;23(3):467-80.

Pattnaik S, Swain K, Lin Z. Graphene and graphene-based nanocomposites: biomedical applications and biosafety. J Mater Chem B. 2016;4:7813-31.

Hota SS, Pattnaik S, Mallick S. Formulation and evaluation of multidose propofol nanoemulsion using statistically designed experiments. Acta Chim Slov. 2020;67(1):179-88.

Yadav YC, Pattnaik S, Swain K. Curcumin loaded mesoporous silica nanoparticles: assessment of bioavailability and cardioprotective effect. Drug Dev Ind Pharm. 2019;45(12):1889-95.

Pattnaik S, Swain K, Rao JV, Talla V, Baikuntha Prusty K, Subudhi SK. Polymer co-processing of ibuprofen through compaction for improved oral absorption. RSC Adv. 2015;5:74720-5.

Pattnaik S, Swain K, Rao JV, Varun T, Baikuntha Prusty K, Subudhi SK. Aceclofenac nanocrystals for improved dissolution: Influence of polymeric stabilizers. RSC Adv. 2015;5:91960-5.

Pattnaik S, Swain K, Manaswini P, Divyavani E, Rao JV, Talla V, et al. Fabrication of aceclofenac nanocrystals for improved dissolution: Process optimization and physicochemical characterization. J Drug Deliv Sci Technol. 2015;29:199-209.

Manjooran NJ, Pickrell GR. Biologically self-assembled porous polymers. J Mater Process Technol. 2005;168(2):225-9.

Taheri-Ledari R. Classification of micro and nanoscale composites. In: Maleki A, editor. Heterogeneous Micro and Nanoscale Composites for the Catalysis of Organic Reactions. Netherlands: Elsevier; 2022. p. 1-21.

Zhao D, Wan Y, Zhou W. Ordered Mesoporous Materials. New Jersey: Wiley; 2013.

Todd EM, Hillmyer MA. Porous polymers from self-assembled structures. In: Silverstein MS, Cameron NR, Hillmyer M, editors. Porous Polymers. New Jersey: Wiley; 2011. p. 31-78.

Xu Q. Nanoporous materials: synthesis and applications. Florida: CRC Press; 2013.

Ge J, Zhang Y, Park SJ. Recent advances in carbonaceous photocatalysts with enhanced photocatalytic performances: a mini review. Materials (Basel). 2019;12(12):1916.

Okay O. Macroporous copolymer networks. Prog Polym Sci. 2000;25:711-79.

Small H. The chromatographic process. In: Ion Chromatography. Modern Analytical Chemistry. Boston: Springer; 1989. p. 11-39.

Yadav P, Yadav H, Shah VG, Shah G, Dhaka G. Biomedical biopolymers, their origin and evolution in biomedical sciences: a systematic review. J Clin Diagn Res. 2015;9:21-5.

Pattnaik S, Swain K. Mesoporous nanomaterials as carriers in drug delivery. In: Inamuddin, Asiri AM, Mohammad A, editors. Applications of Nanocomposite Materials in Drug Delivery. Sawston: Woodhead Publishing; 2018. p. 589-604.

Ji C, Annabi N, Khademhosseini A, Dehghani F. Fabrication of porous chitosan scaffolds for soft tissue engineering using dense gas CO2. Acta Biomater. 2011;7(4):1653-64.

Cam C, Zhu S, Truong NF, Scumpia PO, Segura T. Systematic evaluation of natural scaffolds in cutaneous wound healing. J Mater Chem B Mater Biol Med. 2015;3(40):7986-92.

Ahuja G, Pathak K. Porous carriers for controlled/modulated drug delivery. Indian J Pharm Sci. 2009;71(6):599-607.

Yeung TW, Üçok EF, Tiani KA, McClements DJ, Sela DA. Microencapsulation in alginate and chitosan microgels to enhance viability of Bifidobacterium longum for oral delivery. Front Microbiol. 2016;7:494-504.

Atala A. Tissue engineering and regenerative medicine: concepts for clinical application. Rejuvenation Res. 2004;7(1):15-31.

Bajaj P, Schweller RM, Khademhosseini A, West JL, Bashir R. 3D biofabrication strategies for tissue engineering and regenerative medicine. Annu Rev Biomed Eng. 2014;16:247-76.

Causa F, Netti PA, Ambrosio L. A multi-functional scaffold for tissue regeneration: the need to engineer a tissue analogue. Biomaterials. 2007;28(34):5093-9.

Hutmacher DW. Scaffold design and fabrication technologies for engineering tissues - state of the art and future perspectives. J Biomater Sci Polym Ed. 2001;12(1):107-24.

Kweon HY, Yoo MK, Park IK, Kim TH, Lee HC, Lee HS, et al. A novel degradable polycaprolactone networks for tissue engineering. Biomaterials. 2003;24(5):801-8.

Mandal BB, Kundu SC. Cell proliferation and migration in silk fibroin 3D scaffolds. Biomaterials. 2009;30(15):2956-65.

Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials. 2000;21(24):2529-43.

Murphy CM, O’Brien FJ. Understanding the effect of mean pore size on cell activity in collagen-glycosaminoglycan scaffolds. Cell Adh Migr. 2010;4(3):377-81.

Liu X, Ma PX. Polymeric scaffolds for bone tissue engineering. Ann Biomed Eng. 2004;32(3):477-86.

Hou Q, Grijpma DW, Feijen J. Porous polymeric structures for tissue engineering prepared by a coagulation, compression moulding and salt leaching technique. Biomaterials. 2003;24(11):1937-47.

Zhang R, Ma PX. Porous poly(L-lactic acid)/apatite composites created by biomimetic process. J Biomed Mater Res. 1999;45(4):285-93.

Pattnaik S, Swain K, Mallick S. Influence of polymeric system and loading dose on drug release from alfuzosin hydrochloride transdermal films. Lat Am J Pharm. 2009;28(1):62-9.

Pattnaik S, Swain K, Ramakrishna S. Optimal delivery of poorly soluble drugs using electrospun nanofiber technology: Challenges, state of the art, and future directions. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2022;e1859.

Pattnaik S, Swain K, Bindhani A, Mallick S. Influence of chemical permeation enhancers on transdermal permeation of alfuzosin: an investigation using response surface modeling. Drug Dev Ind Pharm. 2011;37(4):465-74.

Panda DS, Alruwaili NK, Pattnaik S, Swain K. Ibuprofen loaded electrospun polymeric nanofibers: a strategy to improve oral absorption. Acta Chim Slov. 2022;69(2):483-8.

De PK, Mallick S, Mukherjee B, Sengupta S, Pattnaik S, Chakraborty S. Optimization of in-vitro permeation pattern of ketorolac tromethamine transdermal patches. Iran J Pharm Res. 2011;10(2):193-201.

Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev. 2012;64:24-36.

Allen TM, Cullis PR. Drug Delivery Systems: entering the mainstream. Science. 2004;303:1818-22.

Sher P, Ingavle G, Ponrathnam S, Pawar AP. Low density porous carrier drug adsorption and release study by response surface methodology using different solvents. Int J Pharm. 2007;331(1):72-83.

Shivanand P, L. Sprockel O. A controlled porosity drug delivery system. Int J Pharm. 1998;167:83–96.

Wang C, He C, Tong Z, Liu X, Ren B, Zeng F. Combination of adsorption by porous CaCO3 microparticles and encapsulation by polyelectrolyte multilayer films for sustained drug delivery. Int J Pharm. 2006;308(1-2):160-7.

Salonen J, Laitinen L, Kaukonen AM, Tuura J, Björkqvist M, Heikkilä T, et al. Mesoporous silicon microparticles for oral drug delivery: loading and release of five model drugs. J Control Release. 2005;108(2-3):362-74.

Fisher KA, Huddersman KD, Taylor MJ. Comparison of micro- and mesoporous inorganic materials in the uptake and release of the drug model fluorescein and its analogues. Chemistry. 2003;9(23):5873-8.

El-Ghannam A, Ahmed K, Omran M. Nanoporous delivery system to treat osteomyelitis and regenerate bone: gentamicin release kinetics and bactericidal effect. J Biomed Mater Res B Appl Biomater. 2005;73:277-84.

Volodkin DV, Larionova NI, Sukhorukov GB. Protein encapsulation via porous CaCO3 microparticles templating. Biomacromolecules. 2004;5(5):1962-72.

Kim HW, Knowles JC, Kim HE. Hydroxyapatite/poly(ε-caprolactone) composite coatings on hydroxyapatite porous bone scaffold for drug delivery. Biomaterials. 2004;25(7-8):1279-87.

Suzuki K, Yumura T, Tanaka Y, Akashi M. Thermo-responsive release from interpenetrating porous silica-poly(N-isopropylacrylamide) hybrid gels. J Control Release. 2001;75(1-2):183-9.

Kortesuo P, Ahola M, Kangas M, Leino T, Laakso S, Vuorilehto L, et al. Alkyl-substituted silica gel as a carrier in the controlled release of dexmedetomidine. J Control Release. 2001;76(3):227-38.

Moes AJ. Gastroretentive dosage forms. Crit Rev Ther Drug Carrier Syst. 1993;10(2):143-95.

Singh BN, Kim KH. Floating drug delivery systems: an approach to oral controlled drug delivery via gastric retention. J Control Release. 2000;63(3):235-59.

Zhu YJ, Chen F. pH-responsive drug-delivery systems. Chem Asian J. 2015;10(2):284-305.

Sun-Wada GH, Wada Y, Futai M. Lysosome and lysosome-related organelles responsible for specialized functions in higher organisms, with special emphasis on vacuolar-type proton ATPase. Cell Struct Funct. 2003;28(5):455-63.

Shenoy D, Little S, Langer R, Amiji M. Poly(ethylene oxide)-modified poly(β-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs: Part 2. In vivo distribution and tumor localization studies. Pharm Res. 2005;22(12):2107-14.

Xu Z, Hu L, Ming J, Cui X, Zhang M, Dou J, et al. Self-gated porous organic polymer as drug delivery system for pH stimuli-responsive controlled Quercetin release. Microporous Mesoporous Mater. 2020;303:110259.

Huang T, Manchanda P, Zhang L, Shekhah O, Khashab NM, Eddaoudi M, et al. Cyclodextrin-functionalized asymmetric block copolymer films as high-capacity reservoir for drug delivery. J Memb Sci. 2019;584:1-8.

Laha A, Yadav S, Majumdar S, Sharma CS. In-vitro release study of hydrophobic drug using electrospun cross-linked gelatin nanofibers. Biochem Eng J. 2016;105:481-8.

Yu L, Xuan H, Guo Y, Chin AL, Tong R, Pickrell G, et al. Porous polymer optical fiber fabrication and potential biomedical application. Opt Mater Express. 2017;7(6):1813-9.

Okur ME, Karantas ID, Şenyiğit Z, Üstündağ Okur N, Siafaka PI. Recent trends on wound management: new therapeutic choices based on polymeric carriers. Asian J Pharm Sci. 2020;15(6):661-84.

Bolton L, van Rijswijk L. Wound dressings: meeting clinical and biological needs. Dermatol Nurs. 1991;3(3):146-61.

Rodrigues M, Kosaric N, Bonham CA, Gurtner GC. Wound healing: a cellular perspective. Physiol Rev. 2019;99(1):665-706.

Bowler PG, Duerden BI, Armstrong DG. Wound microbiology and associated approaches to wound management. Clin Microbiol Rev. 2001;14(2):244-69.

Saghazadeh S, Rinoldi C, Schot M, Kashaf SS, Sharifi F, Jalilian E, et al. Drug delivery systems and materials for wound healing applications. Adv Drug Deliv Rev. 2018;127:138-66.

Qian L, Zhang H. Porogen Incorporation and Phase Inversion. In: Silverstein MS, Cameron NR, Hillmyer MA, editors. Porous Polymers. New Jersey: Wiley; 2011. p. 79-117.

Islam MM, Shahruzzaman M, Biswas S, Nurus Sakib Md, Rashid TU. Chitosan based bioactive materials in tissue engineering applications-a review. Bioact Mater. 2020;5(1):164-83.

Rezaii M, Oryan S, Javeri A. Curcumin nanoparticles incorporated collagen-chitosan scaffold promotes cutaneous wound healing through regulation of TGF-β1/Smad7 gene expression. Mater Sci Eng C Mater Biol Appl. 2019;98:347-57.

Almazrooa SA, Noonan V, Woo SB. Resorbable collagen membranes: Histopathologic features. Oral Surg Oral Med Oral Pathol Oral Radiol. 2014;118(2):236-40.

Sell SA, Wolfe PS, Garg K, McCool JM, Rodriguez IA, Bowlin GL. The use of natural polymers in tissue engineering: a focus on electrospun extracellular matrix analogues. Polymers. 2010;2(4):522-53.

Bianchera A, Catanzano O, Boateng J, Elviri L. The Place of biomaterials in wound healing. In: Boateng J, editor. Therapeutic Dressings and Wound Healing Applications. New Jersey: Wiley; 2020. p. 337-66.

Ijaola AO, Akamo DO, Damiri F, Akisin CJ, Bamidele EA, Ajiboye EG, et al. Polymeric biomaterials for wound healing applications: a comprehensive review. J Biomater Sci Polym Ed. 2022;33(15):1998-2050.

Rethinam S, Vijayan S, Aruni AW, Basaran B, Alagumuthu T, Ramamoorthy R. Enhanced tissue regeneration using a nano- bioactive scaffold- a novel perspective. Mater Chem Phys. 2020;240:122303.

Martínez-Ibarra DM, Sánchez-Machado DI, López-Cervantes J, et al. Hydrogel wound dressings based on chitosan and xyloglucan: development and characterization. J Appl Polym Sci. 2019;136(12):47342.

Ma Y, Ji Y, Zhong T, Wan W, Yang Q, Li A, et al. Bioprinting-based PDLSC-ECM screening for in vivo repair of alveolar bone defect using cell-laden, injectable and photocrosslinkable hydrogels. ACS Biomater Sci Eng. 2017;3(12):3534-45.

Sarker B, Li W, Zheng K, Detsch R, Boccaccini AR. Designing porous bone tissue engineering scaffolds with enhanced mechanical properties from composite hydrogels composed of modified alginate, gelatin, and bioactive glass. ACS Biomater Sci Eng. 2016;2(12):2240-54.

Shi N, Li Y, Chang L, Zhao G, Jin G, Lyu Y, et al. A 3D, magnetically actuated, aligned collagen fiber hydrogel platform recapitulates physical microenvironment of myoblasts for enhancing myogenesis. Small Methods. 2021;5(6):e2100276.

Wiria FE, Leong KF, Chua CK, Liu Y. Poly-epsilon-caprolactone/hydroxyapatite for tissue engineering scaffold fabrication via selective laser sintering. Acta Biomater. 2007;3(1):1-12.

Ciardelli G, Chiono V, Vozzi G, Pracella M, Ahluwalia A, Barbani N, et al. Blends of poly-(epsilon-caprolactone) and polysaccharides in tissue engineering applications. Biomacromolecules. 2005;6(4):1961-76.

Wiria FE, Chua CK, Leong KF, Quah ZY, Chandrasekaran M, Lee MW. Improved biocomposite development of poly(vinyl alcohol) and hydroxyapatite for tissue engineering scaffold fabrication using selective laser sintering. J Mater Sci Mater Med. 2008;19(3):989-96.

Bayart M, Dubus M, Charlon S, Kerdjoudj H, Baleine N, Benali S, et al. Pellet-Based fused filament fabrication (FFF)-derived process for the development of polylactic acid/hydroxyapatite scaffolds dedicated to bone regeneration. Materials (Basel). 2022;15(16):5615.

Chen X, Gao CY, Chu XY, Zheng CY, Luan YY, He X, et al. VEGF-Loaded heparinised gelatine-hydroxyapatite-tricalcium phosphate scaffold accelerates bone regeneration via enhancing osteogenesis-angiogenesis coupling. Front Bioeng Biotechnol. 2022;10:915181.

Ma Y, Yao J, Liu Q, Han T, Zhao J, Ma X, et al. Liquid bandage harvests robust adhesive, hemostatic, and antibacterial performances as a first-aid tissue adhesive. Adv Funct Mater. 2020;30(39):2001820.

Soleimanpour M, Mirhaji SS, Jafari S, Derakhshankhah H, Mamashli F, Nedaei H, et al. Designing a new alginate-fibrinogen biomaterial composite hydrogel for wound healing. Sci Rep. 2022;12:7213.

Lin CW, Guan ZY, Lu M, Wu TY, Cheng NC, Chen HY, et al. Synergistically enhanced wound healing of a vapor-constructed porous scaffold. ACS Appl Bio Mater. 2020;3(9):5678-86.

Eivazzadeh-Keihan R, Aliabadi HAM, Radinekiyan F, Sobhani M, khalili F, Maleki A, et al. Investigation of the biological activity, mechanical properties and wound healing application of a novel scaffold based on lignin–agarose hydrogel and silk fibroin embedded zinc chromite nanoparticles. RSC Adv. 2021;11:17914-23.

Larrañeta E, Imízcoz M, Toh JX, Irwin NJ, Ripolin A, Perminova A, et al. Synthesis and characterization of lignin hydrogels for potential applications as drug eluting antimicrobial coatings for medical materials. ACS Sustain Chem Eng. 2018;6(7):9037-46.

Ciolacu D, Oprea AM, Anghel N, Cazacu G, Cazacu M. New cellulose-lignin hydrogels and their application in controlled release of polyphenols. Mater Sci Eng C. 2012;32(3):452-63.

Tölli MA, Ferreira MP, Kinnunen SM, Rysä J, Mäkilä EM, Szabó Z, et al. In vivo biocompatibility of porous silicon biomaterials for drug delivery to the heart. Biomaterials. 2014;35(29):8394-405.

Kovalainen M, Mönkäre J, Kaasalainen M, Riikonen J, Lehto VP, Salonen J, et al. Development of porous silicon nanocarriers for parenteral peptide delivery. Mol Pharmaceutics. 2013;10(1):353-9.

Srinivasan B, Kumar R, Shanmugam K, Sivagnam UT, Reddy NP, Sehgal PK. Porous keratin scaffold-promising biomaterial for tissue engineering and drug delivery. J Biomed Mater Res B Appl Biomater. 2010;92(1):5-12.

Dong Z, Cui H, Zhang H, Wang F, Zhan X, Mayer F, et al. 3D printing of inherently nanoporous polymers via polymerization-induced phase separation. Nat Commun. 2021;12:247.