Preparation and mechanism analysis of morphology-controlled cellulose nanocrystals by H2SO4 hydrolysis of Eucalyptus pulp

Main Article Content

Pasakorn Jutakridsada
Somnuk Theerakulpisut
Varsha Srivastava
Mika Sillanpää
Khanita Kamwilaisak

Abstract

Cellulose from Eucalyptus pulp has been used as raw material for producing cellulose nanocrystals (CNCs). In this research work, H2SO4 hydrolysis was utilized in the production of CNCs. The effects of hydrolysis parameters, namely, H2SO4 concentration (30, 40, and 50 wt%), hydrolysis time (30, 60, and 90 min), and hydrolysis temperature (60, 70, and 80 °C), on the CNC structure were examined. The physical and chemical properties of Eucalyptus pulp and CNCs were characterized using different techniques such as X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmittance electron microscopy (TEM), and thermal gravimetric analysis (TGA). The results showed the optimal condition was at 50 wt% of H2SO4 concentration, 60 min hydrolysis time, and 60 °C hydrolysis temperature, which yielded 75.51% ± 1.51 % of crystallinity and 4.03 ± 0.10 nm of crystal size. Furthermore, it was also determined that an increase in H2SO4 concentration, time, or temperature led to a lower percentage of crystallinity and reduction in crystal size. CNCs were noted to be more thermally stable than the Eucalyptus pulp. Thus, this method could be an alternative way to create a new product in the paper industry.

Article Details

How to Cite
Jutakridsada, P. ., Theerakulpisut, S., Srivastava, V. ., Sillanpää, M. ., & Kamwilaisak, K. (2022). Preparation and mechanism analysis of morphology-controlled cellulose nanocrystals by H2SO4 hydrolysis of Eucalyptus pulp. Engineering and Applied Science Research, 49(6), 753–762. Retrieved from https://ph01.tci-thaijo.org/index.php/easr/article/view/249606
Section
ORIGINAL RESEARCH

References

Jutakridsada P, Pimsawat N, Sillanpää M, Kamwilaisak K. Olive oil stability in Pickering emulsion preparation from Eucalyptus pulp and its rheology behaviour. Cellulose. 2020;27(11):6189-203.

Jutakridsada P, Iamamornphanth W, Patikarnmonthon N, Kamwilaisak K. Usage of Eucalyptus globulus bark as a raw material for natural antioxidant and fuel source. Clean Technol Environ Policy. 2017;19(3):907-15.

Liu J, Willför S, Mihranyan A. On importance of impurities, potential leachables and extractables in algal nanocellulose for biomedical use. Carbohydr Polym. 2017;172:11-9.

Kamwilaisak K, Pimsawat N, Khotsakha N, Jutakridsada P. Synthesis and characterization of cellulose nanocrystal from Eucalyptus pulp. N Biotechnol. 2018;44:S97.

Fleming K, Gray DG, Matthews S. Cellulose crystallites. Chem Eur J. 2001;7(9):1831-6.

Habibi Y, Lucia LA, Rojas OJ. Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev. 2010;110(6):3479-500.

Huang S, Li S, Lu X, Wang Y. Modification of cellulose nanocrystals as antibacterial nanofillers to fabricate rechargeable nanocomposite films for active packaging. ACS Sustainable Chem Eng. 2022;10(28):9265-74.

Zhao J, He X, Wang Y, Zhang W, Zhang X, Zhang X, et al. Reinforcement of all-cellulose nanocomposite films using native cellulose nanofibrils. Carbohydr Polym. 2014;104:143-50.

Besbes I, Alila S, Boufi S. Nanofibrillated cellulose from TEMPO-oxidized Eucalyptus fibres: effect of the carboxyl content. Carbohydr Polym. 2011;84(3):975-83.

Ruiz-Caldas MX, Carlsson J, Sadiktsis I, Jaworski A, Nilsson U, Mathew AP. Cellulose nanocrystals from postconsumer cotton and blended fabrics: a study on their properties, chemical composition, and process efficiency. ACS Sustainable Chem Eng. 2022;10(11):3787-98.

Spinella S, Maiorana A, Qian Q, Dawson NJ, Hepworth V, McCallum SA, et al. Concurrent cellulose hydrolysis and esterification to prepare a surface-modified cellulose nanocrystal decorated with carboxylic acid moieties. ACS Sustainable Chem Eng. 2016;4(3):1538-50.

de Carvalho DM, Colodette JL. Comparative study of acid hydrolysis of lignin and polysaccharides in biomasses. Bioresources. 2017;12(4):6907-23.

Tonoli G, Holtman KM, Glenn G, Fonseca AS, Wood D, Williams T, et al. Properties of cellulose micro/nanofibers obtained from Eucalyptus pulp fiber treated with anaerobic digestate and high shear mixing. Cellulose. 2016;23(2):1239-56.

Tonoli GHD, Teixeira EM, Corrêa AC, Marconcini JM, Caixeta LA, Pereira-da-Silva MA, et al. Cellulose micro/nanofibres from Eucalyptus kraft pulp: preparation and properties. Carbohydr Polym. 2012;89(1):80-8.

Dutt D, Tyagi CH. Comparison of various Eucalyptus species for their morphological, chemical, pulp and paper making characteristics. Indian J Chem Technol. 2011;18:145-51.

Segal L, Creely JJ, Martin AE, Conrad CM. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J. 1959;29(10):786-94.

de Carvalho Benini KCC, Voorwald HJC, Cioffi MOH, Rezende MC, Arantes V. Preparation of nanocellulose from Imperata brasiliensis grass using Taguchi method. Carbohydr Polym. 2018;192:337-46.

Ling Z, Wang T, Makarem M, Cintrón MS, Cheng HN, Kang X, et al. Effects of ball milling on the structure of cotton cellulose. Cellulose. 2019;26(1):305-28.

López Durán V, Larsson PA, Wagberg L. On the relationship between fibre composition and material properties following periodate oxidation and borohydride reduction of lignocellulosic fibres. Cellulose. 2016;23(6):3495-510.

Vasconcelos NF, Feitosa JP, da Gama FM, Morais JP, Andrade FK, de Souza Filho MS, et al. Bacterial cellulose nanocrystals produced under different hydrolysis conditions: properties and morphological features. Carbohydr Polym. 2017;155:425-31.

Merlini A, de Souza VC, Gomes RM, Coirolo A, Merlini S, Machado RAF. Effects of reaction conditions on the shape and crystalline structure of cellulose nanocrystals. Cellul Chem Technol. 2018;52(5-6):325-35.

Chen L, Wang Q, Hirth K, Baez C, Agarwal UP, Zhu JY. Tailoring the yield and characteristics of wood cellulose nanocrystals (CNC) using concentrated acid hydrolysis. Cellulose. 2015;22(3):1753-62.

Chen H. 3-Lignocellulose biorefinery feedstock engineering. In: Chen H, editor. Lignocellulose biorefinery engineering. Sawston: Woodhead Publishing; 2015. p. 37-86.

Jutakridsada P, Suwannaruang T, Kasemsiri P, Weerapreeyakul N, Knijnenburg JTN, Theerakulpisut S, et al. Controllability, antiproliferative activity, Ag+ release, and flow behavior of silver nanoparticles deposited onto cellulose nanocrystals. Int J Biol Macromol. In press 2022.

Lavoine N, Desloges I, Dufresne A, Bras J. Microfibrillated cellulose-its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym. 2012;90(2):735-64.

Aulin C, Ahola S, Josefsson P, Nishino T, Hirose Y, Österberg M, et al. Nanoscale cellulose films with different crystallinities and mesostructures-their surface properties and interaction with water. Langmuir. 2009;25(13):7675-85.

Matthew IR, Browne RM, Frame JW, Millar BG. Subperiosteal behaviour of alginate and cellulose wound dressing materials. Biomaterials. 1995;16(4):275-8.

Saelee K, Yingkamhaeng N, Nimchua T, Sukyai P. An environmentally friendly xylanase-assisted pretreatment for cellulose nanofibrils isolation from sugarcane bagasse by high-pressure homogenization. Ind Crops Prod. 2016;82:149-60.

Voronova MI, Surov OV, Guseinov SS, Barannikov VP, Zakharov AG. Thermal stability of polyvinyl alcohol/nanocrystalline cellulose composites. Carbohydr Polym. 2015;130:440-7.

Brinchi L, Cotana F, Fortunati E, Kenny JM. Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr Polym. 2013;94(1):154-69.

Satarn J, Lamamorphanth W, Kamwilaisak K. Acid hydrolysis from corn stover for reducing sugar. Adv Mat Res. 2014;931:1608-13.

Majoinen J, Kontturi E, Ikkala O, Gray DG. SEM Imaging of chiral nematic films cast from cellulose nanocrystal suspensions. Cellulose. 2012;19(5):1599-605.

Wulandari WT, Rochliadi A, Arcana IM. Nanocellulose prepared by acid hydrolysis of isolated cellulose from sugarcane bagasse. IOP Conf Ser Mater Sci Eng. 2016;107(1):012045.

Voronova MI, Zakharov AG, Kuznetsov OY, Surov OV. The effect of drying technique of nanocellulose dispersions on properties of dried materials. Mater Lett. 2012;68:164-7.

Jiang F, Hsieh YL. Super water absorbing and shape memory nanocellulose aerogels from TEMPO-oxidized cellulose nanofibrils via cyclic freezing-thawing. J Mater Chem A. 2014;2(2):350-9.

Mtibe A, Linganiso LZ, Mathew AP, Oksman K, John MJ, Anandjiwala RD. A comparative study on properties of micro and nanopapers produced from cellulose and cellulose nanofibres. Carbohydr Polym. 2015;118:1-8.

Wang Q, Zhao X, Zhu JY. Kinetics of strong acid hydrolysis of a bleached Kraft pulp for producing cellulose nanocrystals (CNCs). Ind Eng Chem Res. 2014;53(27):11007-14.

Lu P, Hsieh YL. Preparation and properties of cellulose nanocrystals: rods, spheres, and network. Carbohydr Polym. 2010;82(2):329-36.

Azhar Zakir MJ, Ramalingam S, Balasubramanian P, Rathinam A, Sreeram KJ, Rao JR, et al. Innovative material from paper and pulp industry for leather processing. J Clean Prod. 2015;104:436-44.

de Azevedo ARG, Alexandre J, Pessanha LSP, Manhães RDST, de Brito J, Marvila MT. Characterizing the paper industry sludge for environmentally-safe disposal. Waste Manage. 2019;95:43-52.

Husnil YA, Andika R, Lee M. Optimal plant-wide control of the wet sulfuric acid process in an integrated gasification combined cycle power plant. J Process Control. 2019;74:147-59.

Mandeep, Gupta GK, Liu H, Shukla P. Pulp and paper industry-based pollutants, their health hazards and environmental risks. Curr Opin Environ Sci Health. 2019;12:48-56.