Pozzolans: A review

Main Article Content

Jhonatan A. Becerra-Duitama
Diana Rojas-Avellaneda

Abstract

Natural and artificial pozzolans are widely used in building materials and play an increasingly important role in minimizing costs and mitigating environmental effects in the manufacturing of building materials. These pozzolans can be obtained as by-products from various industries, generally they are wastes without any application or added value. However, when implemented in cement mixtures, their effectiveness is somewhat questionable. Therefore, it is necessary to determine the properties, characteristics, and behavior of these materials. This study aims to summarize the main pozzolans used in building materials. Volcanic pozzolans, pozzolans of sedimentary origin, fly ash, blast furnace slag, silica fume, metakaolin, ceramic wastes, demolition, and construction wastes, rice husk ash, bagasse ash, biomass ash, and paper sludge were considered. The chief characteristics studied were particle size, specific area chemical composition, and mineralogical composition. In addition, the impact on mechanical properties and durability in cement mixtures using pozzolans was analyzed. It was observed that the mechanical properties of cement mixtures change by increasing pozzolan replacement. The maximum percentage of replacement depends on the characteristics of the pozzolan. In the case of durability, pozzolans decrease absorption and permeability by reducing the porosity of the binder. This decreases acid diffusion and autogenous shrinkage, thus improving concrete durability. Finally, future studies are suggested to consider the implementation of artificial intelligence techniques and machine learning algorithms to improve the properties of the concrete mixtures.

Article Details

How to Cite
Becerra-Duitama, J. A. ., & Rojas-Avellaneda, D. . (2022). Pozzolans: A review. Engineering and Applied Science Research, 49(4), 495–504. Retrieved from https://ph01.tci-thaijo.org/index.php/easr/article/view/247697
Section
REVIEW ARTICLES

References

Cabeza LF, Rincón L, Vilariño V, Pérez G, Castell A. Life cycle assessment (LCA) and life cycle energy analysis (LCEA) of buildings and the building sector: a review. Renew Sustain Energ Rev. 2014;29:394-416.

Cemnet.com [Internet]. The global cement report - 13th edition. Dorking: International Cement Review; 2019 [cited 2021 Jul 24]. Available from: https://www.cemnet.com/Publications/Item/182291/the-global-cement-report-13th-edition.html.

Gursel AP, Masanet E, Horvath A, Stadel A. Life-cycle inventory analysis of concrete production : a critical review. Cem Concr Compos. 2014;51:38-48.

Garrett TD, Cardenas HE, Lynam JG. Sugarcane bagasse and rice husk ash pozzolans: cement strength and corrosion effects when using saltwater. Curr Res Green Sustain Chem. 2020;1-2:7-13.

Van den Heede P, Maes M, Gruyaert E, De Belie N. Full probabilistic service life prediction and life cycle assessment of concrete with fly ash and blast-furnace slag in a submerged marine environment : a parameter study. Int J Environ Sustain Dev. 2012;11(1):32-49.

Robalo K, Costa H, do Carmo R, Julio E. Experimental development of low cement content and recycled construction and demolition waste aggregates concrete. Constr Build Mater. 2021;273:121680.

Medina C, Banfill PFG, Sánchez de Rojas MI, Frías M. Rheological and calorimetric behaviour of cements blended with containing ceramic sanitary ware and construction/demolition waste. Constr Build Mater. 2013;40:822-31.

Medina C, Saez del Bosque IF, Asensio E, Frías M, Sánchez de Rojas MI. Mineralogy and microstructure of hydrated phases during the pozzolanic reaction in the sanitary ware waste/Ca(OH)2 system. J Am Ceram Soc. 2016;99(1):340-8.

Asensio E, Medina C, Frías M, Sánchez de Rojas MI. Fired clay-based construction and demolition waste as pozzolanic addition in cements. J Clean Prod. 2020;265:121610.

Amiri M, Hatami F, Golafshani EM. Evaluating the synergic effect of waste rubber powder and recycled concrete aggregate on mechanical properties and durability of concrete. Case Stud Constr Mater. 2021;15:e00639.

Siddique R, Cachim P. Waste and supplementary cementitious materials in concrete: characterisation, properties and applications. Cambridge: Woodhead Publishing Limited; 2018.

Rani GY, Krishna TJ, Murali K. Strength studies on effect of glass waste in concrete. Mater Today Proc. 2021;46(1):8817-21.

Ibrahim KIM. Recycled waste glass powder as a partial replacement of cement in concrete containing silica fume and fly ash. Case Stud Constr Mater. 2021;15:e00630.

Abu-Saleem M, Zhuge Y, Hassanli R, Ellis M, Rahman M, Levett P. Evaluation of concrete performance with different types of recycled plastica waste for kerb application. Constr Build Mater. 2021;293:123477.

Jain A, Siddique S, Gupta T, Jain S, Sharma RK, Chaudhary S. Evaluation of concrete containing waste plastic shredded fibers: ductility properties. Struct Concr. 2021;22(1):566-75.

Ojeda JP. A meta-analysis on the use of plastic waste as fibers and aggregates in concrete composites. Constr Build Mater. 2021;295:123420.

Kadir AA, Salim NSA, Sarani NA, Rahmat NAI, Abdullah MMAB. Properties of fired clay brick incoporating with sewage sludge waste. AIP Conf Proc. 2017;1885(1):020150.

Mathye RP, Ikotun BD, Fanourakis GC. The effect of dry wastewater sludge as sand replacement on concrete strengths. Mater Today Proc. 2021;38:975-81.

Kumar M, Shreelaxmi P, Kamath M. Review on characteristics of sewage sludge ash and its partial replacement as binder material in concrete. In: Das BB, Nanukuttan SV, Patnaik AK, Panandikar NS, editors. Recent trends in civil engineering. Singapore: Springer; 2021. p. 65-78.

Juenger MCG, Snellings R, Bernal SA. Supplementary cementitious materials: new sources, characterization, and performance insights. Cem Concr Res. 2019;122:257-73.

Muslim F, Wong HS, Choo TH, Buenfeld NR. Influences of supplementary cementitious materials on microstructure and transport properties of spacer-concrete interface. Cem Concr Res. 2021;149:106561.

ASTM. ASTM C 1697-18, Standard specification for blended supplementary cementitious materials. USA: ASTM; 2018.

Duchesne J. Alternative supplementary cementitious materials for sustainable concrete structures: a review on characterization and properties. Waste Biomass Valor. 2021;12(3):1219-36.

Marinkovic S, Draga J. Fly ash. In: Siddique R, Cachim P, editors. Waste and supplementary cementitious materials in concrete. Cambridge: Woodhead Publishing Limited; 2018. p. 235-60.

Sideris K, Justnes H, Soutsos M, Sui T. Fly ash. In: De Belie N, Soutsos M, Gruyaert E, editors. Properties of fresh and hardened concrete containing supplementary cementitious materials. Cham: Springer International Publishing; 2018. p. 55-98.

Ramezanianpour AA. Natural pozzolans. Cement replacement materials. Germany: Springer; 2014. p. 1-46.

Xia J, Guan Q, Zhou Y, Wang J, Gao C, He Y, et al. Use of natural pozzolans in high-performance concrete for the Mombasa-Nairobi railway. Adv Cem Res. 2021;33(7):318-30.

Dedeloudis C, Zervaki M, Sideris K, Juenger M, Alderete N, Kamali-bernard S, et al. Natural pozzolans. In: De Belie N, Soutsos M, Gruyaert E, editors. Properties of fresh and hardened concrete containing supplementary cementitious materials. Cham: Springer International Publishing; 2018. p. 181-231.

Paris JM, Roessler JG, Ferraro CC, Deford HD, Townsend TG. A review of waste products utilized as supplements to Portland cement in concrete. J Clean Prod. 2016;121:1-18.

Sobolev K, Kozhukhova M, Sideris K, Menéndez E, Santhanam M. Alternative supplementary cementitious materials. In: De Belie N, Soutsos M, Gruyaert E, editors. Properties of fresh and hardened concrete containing supplementary cementitious materials. Cham: Springer International Publishing; 2018. p. 233-82.

Black L. Low clinker cement as a sustainable construction material. In: Khatib J, editor. Sustainability of construction materials. 2nd ed. Leeds: Elsevier; 2016. p. 415-57.

Matthes W, Vollpracht A, Villagr Y, Kamali-Bernard S, Hooton D, Gruyaert E, et al. Ground granulated blast-furnace slag. In: De Belie N, Soutsos M, Gruyaert E, editors. Properties of fresh and hardened concrete containing supplementary cementitious materials. Cham: Springer International Publishing; 2018. p. 1-53.

Ramezanianpour AA. Granulated blast furnace slag. Cement replacement materials. Germany: Springer; 2014. p. 157-91.

Khan MI. Nanosilica/silica fume. In: Siddique R, Cachim P, editors. Waste and supplementary cementitious materials in concrete. Cambridge: Woodhead Publishing Limited; 2018. p. 467-98.

Bumanis G, Vitola L, Stipniece L, Locs J, Korjakims A, Bajare D. Evaluation of industrial by-products as pozzolans: a road map for use in concrete production. Case Stud Constr Mater. 2020;13:e00424.

Snellings R, Mertens G, Elsen J. Supplementary cementitious materials. Rev Mineral Geochem. 2012;74(1):211-78.

Sánchez de Rojas Gómez MI, Frías Rojas‏ M. Natural pozzolans in eco-efficient concrete. Eco-efficient concrete. Cambridge: Woodhead Publishing; 2013. p. 83-104.

Pourakbar S, Huat BK. A review of alternatives traditional cementitious binders for engineering improvement of soils. Int J Geotech Eng. 2017;11(2):206-16.

Seco A, Ramirez F, Miqueleiz L, Urmeneta P, García B, Prieto E, et al. Types of waste for the production of pozzolanic materials-a review. In: Show KY, Guo X, editors. Industrial waste. London: IntechOpen; 2012. p. 141-50.

ASTM. ASTM C 618-19, Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. USA: ASTM; 2019.

Davraz M, Ceylan H, Topcu IB, Uygunoglu T. Pozzolanic effect of andesite waste powder on mechanical properties of high strength concrete. Constr Build Mater. 2018;165:494-503.

Aref M. Volcanic scoria as cement replacement. In: Aiello G, editor. Volcanoes-geological and geophysical setting, theoretical aspects and numerical modeling, applications to industry and their impact on the human health. London: IntechOpen; 2018. p. 211-38.

Najimi M, Sobhani J, Ahmadi B, Shekarchi M. An experimental study on durability properties of concrete containing zeolite as a highly reactive natural pozzolan. Constr Build Mater. 2012;35:1023-33.

Kabay N, Tufekci MM, Kizilkanat AB, Oktay D. Properties of concrete with pumice powder and fly ash as cement replacement materials. Constr Build Mater. 2015;85:1-8.

Alderete NM, Villagran Zaccardi YA, Coelho Dos Santos GS, De Belie N. Particle size distribution and specific surface area of SCM’s compared through experimental techniques. In: Jensen OM, Kovler K, de Belie N, editors. Proceedings of the International RILEM Conference Materials, Systems and Structures in Civil Engineering 2016 Segment on Concrete with supplementary cementitious materials; 2016 Aug 22-24; Lyngby, Denmark. Paris: RILEM; 2016. p. 61-72.

Brown RJ, Bonadonna C, Durant AJ. A review of volcanic ash aggregation. Phys Chem Earth. 2012;45-46:65-78.

Lemougna PN, Wang K, Tang Q, Nzeukou AN, Billong N, Melo UC, et al. Review on the use of volcanic ashes for engineering applications. Resour Conserv Recycl. 2018;137:177-90.

Yuna Z. Review of the natural, modified, and synthetic zeolites for heavy metals removal from wastewater. Environ Eng Sci. 2016;33(7):443-54.

Aksakal EL, Angin I, Oztas T. Effects of diatomite on soil physical properties. Catena. 2012;88(1):1-5.

Ahmadi Z, Esmaeili J, Kasaei J, Hajialioghli R. Properties of sustainable cement mortars containing high volume of raw diatomite. Sustain Mater Technol. 2018;16:47-53.

Chengula DH. Improving cementitious properties of blended pozzolan based materials for construction of low cost buildings in Mbeya region, Tanzania. Germany: Kassel University Press GmbH; 2018. p. 4-64.

Wang F, Kovler K, Provis JL, Buchwald A, Cyr M, Patapy C, et al. Metakaolin. In: De Belie N, Soutsos M, Gruyaert E, editors. Properties of fresh and hardened concrete containing supplementary cementitious materials. Cham: Springer; 2018. p. 153-79.

Paiva H, Velosa A, Cachim P, Ferreira VM. Effect of pozzolans with different physical and chemical characteristics on concrete properties. Mater de Constr. 2016;66(322):1-12.

Frías M, Sánchez de Rojas MI, Cabrera J. The effect that the pozzolanic reaction of metakaolin has on the heat evolution in metakaolin-cement mortars. Cem Concr Res. 2000;30(2):209-16.

Rojas MF, Sánchez de Rojas MI. The effect of high curing temperature on the reaction kinetics in MK/lime and MK-blended cement matrices at 60 °C. Cem Concr Res. 2003;33(5):643-9.

Frías M, Vigil de la Villa R, Martínez-Ramírez S, García-Giménez R, Sanchez de Rojas MI. Mineral phases in metakaolin-portlandite pastes cured 15 years at 60°C. New data for scientific advancement. Appl Clay Sci. 2020;184:105368.

Sánchez de Rojas MI, Frías M, Rodríguez O, Rivera J. Durability of blended cement pastes containing ceramic waste as a pozzolanic addition. J Am Ceram Soc. 2014;97(5):1543-51.

Sánchez de Rojas MI, Marín FP, Frías M, Rivera J. Properties and perfomances of concrete tiles containing waste fired clay materials. J Am Ceram Soc. 2007;90(11):3559-65.

de Lucas EA, Medina C, Frías M, Sánchez de Rojas MI. Clay-based construction and demolition waste as a pozzolanic addition in blended cements. Effect on sulfate resistance. Constr Build Mater. 2016;127:950-8.

Singh B. Rice husk ash. In: Siddique R, Cachim P, editors. Waste and supplementary cementitious materials in concrete. Cambridge: Woodhead Publishing Limited; 2018. p. 417-60.

Paya J, Monzó J, Borrachero MV, Tashima MM, Soriano L. Bagasse ash. In: Siddique R, Cachim P, editors. Waste and supplementary cementitious materials in concrete. Cambridge: Woodhead Publishing Limited; 2018. p. 559-98.

Martínez-Lage I, Velay-Lizancos M, Vázquez-Burgo P, Rivas-Fernández A, Vázquez-Herrero C, Ramírez-Rodríguez A, et al. Concretes and mortars with waste paper industry: biomass ash and dregs. J Environ Manag. 2016;181:863-73.

Thomas M, Jewell R, Jones R. Coal fly ash as a pozzolan. In: Robl T, Oberlink A, Jones R, editors. Coal combustion products (CCP’s). Cambridge: Woodhead Publishing Limited; 2017. p. 121-54.

Karthik D, Nirmalkumar K, Priyadharshini R. Characteristic assessment of self-compacting concrete with supplementary cementitious materials. Constr Build Mater. 2021;297:123845.

ASTM. ASTM C 125-16, Standard terminology relating to concrete and concrete aggregates. USA: ASTM; 2016.

Yuksel I. Blast-furnace slag. In: Siddique R, Cachim P, editors. Waste and supplementary cementitious materials in concrete. Cambridge: Woodhead Publishing Limited; 2018. p. 361-415.

Ozbakkaloglu T, Gu L, Pour AF. Normal-and high-strength concretes incorporating air-cooled blast furnace slag coarse aggregates: effect of slag size and content on the behavior. Constr Build Mater. 2016;126:138-46.

Fernandes FM. Clay bricks. In: Ghiassi B, Lourenc̦o PB, editors. Long-term performance and durability of masonry structures: degradation mechanisms, health monitoring and service life design. Cambridge: Woodhead Publishing Limited; 2019. p. 3-19.

Frías M, Rodriguez O, Sánchez de Rojas MI. Paper sludge, an environmentally sound alternative source of MK-based cementitious materials. Constr Build Mater. 2015;74:37-48.

Ramezanianpour AA. Metakaolin. Cement replacement materials. Germany: Springer; 2014. p. 225-55.

Jafari K, Rajabipour F. Performance of impure calcined clay as a pozzolan in concrete. Transp Res Rec. 2021;2675(2):98-107.

Sánchez de Rojas MI, Frías M, Sabador E, Asensio E, Rivera J, Medina C. Durability and chromatic behavior in cement pastes containing ceramic industry milling and glazing by-products. J Am Ceram Soc. 2019;102(4):1971-81.

Sánchez de Rojas MI, Marin F, Rivera J, Frías M. Morphology and properties in blended cements with ceramic wastes as a pozzolanic material. J Am Ceram Soc. 2006;89(12):3701-5.

Asensio E, Medina C, Frías M, Sánchez de Rojas MI. Characterization of ceramic-based construction and demolition waste: use as pozzolan in cements. J Am Ceram Soc. 2016;99(12):4121-7.

Aja OC, Al-Kayiem HH. Review of municipal solid waste management options in Malaysia, with an emphasis on sustainable waste-to-energy options. J Mater Cycles Waste Manag. 2013;16(4):693-710.

Asadullah M. Barriers of commercial power generation using biomass gasification gas: a review. Renew Sustain Energ Rev. 2014;29:201-15.

Aprianti E, Shafigh P, Bahri S, Farahani JN. Supplementary cementitious materials origin from agricultural wastes-a review. Constr Build Mater. 2015;74:176-87.

Ramezanianpour AA. Rice husk ash. Cement replacement materials. Germany: Springer; 2014. p. 257-98.

Sarker TC, Azam SMGG, Bonanomi G. Recent advances in sugarcane industry solid by-products valorization. Waste Biomass Valor. 2017;8(2):241-66.

Batool F, Masood A, Ali M. Characterization of sugarcane bagasse ash as pozzolan and influence on concrete properties. Arab J Sci Eng. 2020;45:3891-900.

Bahurudeen A, Marckson AV, Kishore A, Santhanam M. Development of sugarcane bagasse ash based Portland pozzolana cement and evaluation of compatibility with superplasticizers. Constr Build Mater. 2014;68:465-75.

Siddique R. Utilization of wood ash in concrete manufacturing. Resour Conserv Recycl. 2012;67:27-33.

Thomas BS, Yang J, Mo KH, Abdalla JA, Hawileh RA, Ariyachandra E. Biomass ashes from agricultural wastes as supplementary cementitious materials or aggregate replacement in cement/geopolymer concrete: a comprehensive review. J Build Eng. 2021;40:102332.

Chowdhury S, Mishra M, Suganya O. The incorporation of wood waste ash as a partial cement replacement material for making structural grade concrete: an overview. Ain Shams Eng J. 2015;6(2):429-37.

Mavroulidou M, Shah S. Alkali-activated slag concrete with paper industry waste. Waste Manag Res. 2021;39(3):466-72.

Frias Rojas M, Sánchez de Rojas Gómez MI. Artificial pozzolans in eco-efficient concrete. In: Pacheco-Torgal F, Jalali S, Labrincha J, John VM, editors. Eco-efficient concrete. Cambridge: Woodhead Publishing Limited; 2013. p. 105-22.

Celik K, Hay R, Hargis CW, Moon J. Effect of volcanic ash pozzolan or limestone replacement on hydration of Portland cement. Constr Build Mater. 2019;197:803-12.

Davraz M, Ceylan H, Topçu ÍB, Uygunoğlu T. Pozzolanic effect of andesite waste powder on mechanical properties of high strength concrete. Constr Build Mater. 2018;165:494-503.

Dinakar P, Reddy MK, Sharma M. Behaviour of self compacting concrete using Portland pozzolana cement with different levels of fly ash. Mater Des. 2013;46:609-16.

Yoon S, Monteiro PJM, Macphee DE, Glasser FP Imbabi MSE. Statistical evaluation of the mechanical properties of high-volume class F fly ash concretes. Constr Build Mater. 2014;54:432-42.

Lim SK, Ling TC, Hussin MW. Strength properties of self-compacting mortar mixed with GGBFS. Constr Mater. 2012;165(2):87-98.

Hussain ST, Sastry KVSGK. Study of strength properties of concrete by using micro silica and nano silica. Int J Res Eng Technol. 2014;3(10):103-8.

Adil G, Kevern JT, Mann D. Influence of silica fume on mechanical and durability of previous concrete. Constr Build Mater. 2020;247:118453.

Zhang S, Zhou Y, Sun J, Han F. Effect of ultrafine metakaolin on the properties of mortar and concrete. Crystals. 2021;11(6):665.

Thankman GL, Thurvas Renganathan N. Ideal supplementary cementing material-metakaolin : a review. Int Rev Appl Sci Eng. 2020;11(1):58-65.

Siddika A, Al Mamum MA, Ali MH. Study on concrete qith rice husk ash. Innov Infrastruct Solut. 2018;3(1):1-9.

Ye G, Huang H, Van Tuan N. Rice husk ash. In: De Belie N, Soutsos M, Gruyaert E, editors. Properties of fresh and hardened concrete containing supplementary cementitious materials. Cham: Springer International Publishing; 2018. p. 283-302.

Ahsan MB, Hossain Z. Supplemental use of rice husk ash (RHA) as a cementitious material in concrete industry. Constr Build Mater. 2018;178:1-9.

Loganayagan S, Chandra Mohan N, Dhivyabharathi S. Sugarcane bagasse ash as alternate supplementary cementitious material in concrete. Mater Today Proc. 2021;45:1004-7.

Neto JSA, de França MJS, de Amorim Junior NS, Riberio DV. Effects of adding sugarcane bagasse ash on the properties and durability of concrete. Constr Build Mater. 2021;266:120959.

Farinha CB, de Brito J, Veiga R. Influence of forest biomass bottom ashes on the fresh, water and mechanical behaviour of cement-based mortars. Resour Conserv Recycl. 2019;149:750-9.

Benhood A, Golafshani EM. Artificial intelligence to model the performance of concrete mixtures and elements: a review. Arch Computat Methods Eng. 2021:1-24.

Golafshani EM, Benhood A, Hosseinikebria SS, Arashpour M. Novel metaheuristics-based type-2 fuzzy inference system for predicting the compressive strength of recycled aggregate concrete. J Clean Prod. 2021;320:128771.