Nanosized Fe3O4/SiO2 core-shells fabricated from natural sands, magnetic properties, and their application for dye adsorption
Main Article Content
Abstract
This work presents Fe3O4/SiO2 core-shell fabrication. Silica (SiO2) nanoparticles (NPs) were prepared from silica sand using a continuous method, and Fe3O4 NPs were prepared from iron sand using the co-precipitation route. For Fe3O4/SiO2 core-shell fabrication, we used the wet mixing method, where the composition of Fe3O4 and SiO2 NPs was varied, and polyethylene glycol (PEG) was used as a binder. With an in-situ technique, tetraethyl orthosilicate (TEOS) was used as the SiO2 precursor to coat the surface of the Fe3O4 NPs and the mass ratio of SiO2 and Fe3O4 NPs was modified by varying the composition of the TEOS. The samples were characterized as follows: the structure, functional groups, particle size, morphology, and the magnetic property of Fe3O4/SiO2 was characterized via X-ray diffraction, energy dispersive X-ray, Fourier transform infrared, scanning electron microscopy, and vibrating sample magnetometer, respectively, and porosity analysis was conducted. The Fe3O4/SiO2 composites were successfully synthesized using wet mixing and in situ methods. Specifically, the diffraction peaks show PEG (2θ»19° and 23°) for samples prepared using the wet mixing technique. The presence of PEG in the Fe3O4/SiO2 composites reduced the saturation magnetization of the Fe3O4 NPs significantly from 29.5 to 9.0 emu/g when synthesized using the wet mixing method, and from 29.5 to 19.8 emu/g when synthesized using in the situ method. Furthermore, the increasing SiO2 NPs composition reduced the shell wall thickness significantly and enhanced the adsorption porosity of the Fe3O4/SiO2 core-shells. The higher SiO2 content led to a decrease in the porous volume of the Fe3O4/SiO2 core-shells.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Todini E. Paradigmatic changes required in water resources management to benefit from probabilistic forecasts. Water Secur. 2018;3:9-17.
Petrie B, Barden R, Kasprzyk-Hordern B. A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring. Water Res. 2015;72:3-27.
Gupta N, Pandey P, Hussain J. Effect of physicochemical and biological parameters on the quality of river water of Narmada, Madhya Pradesh, India. Water Sci. 2017;31(1):11-23.
Dewanto AS, Kusumawati DH, Putri NP, Yulianingsih A, Sa’adah IKF, Taufiq A, et al. Structure analysis of Fe3O4@SiO2 core shells prepared from amorphous and crystalline SiO2 particles. IOP Conf Ser Mater Sci Eng. 2018;367:012010.
Tamez C, Hernandez R, Parsons JG. Removal of Cu (II) and Pb (II) from aqueous solution using engineered iron oxide nanoparticles. Microchem J. 2016;125:97-104.
Hou S, Li X, Wang H, Wang M, Zhang Y, Chi Y, et al. Synthesis of core–shell structured magnetic mesoporous silica microspheres with accessible carboxyl functionalized surfaces and radially oriented large mesopores as adsorbents for the removal of heavy metal ions. RSC Adv. 2017;7(82):51993-2000.
Yang L, Tian J, Meng J, Zhao R, Li C, Ma J, et al. Modification and characterization of Fe3O4 nanoparticles for use in adsorption of alkaloids. Molecules. 2018;23(3):562.
Carlos L, Garcia Einschlag FS, González MC, Mártire DO. Applications of magnetite nanoparticles for heavy metal removal from wastewater. In: Garca Einschlag FS, editor. WasteWater - Treatment Technologies and Recent Analytical Developments. London: InTech; 2013. p. 63-77.
Konate A, He X, Zhang Z, Ma Y, Zhang P, Alugongo GM, et al. Magnetic (Fe3O4) nanoparticles reduce heavy metals uptake and mitigate their toxicity in wheat seedling. Sustainability. 2017;9(5):790.
Yang S, Zeng T, Li Y, Liu J, Chen Q, Zhou J, et al. Preparation of graphene oxide decorated Fe3O4@SiO2 nanocomposites with superior adsorption capacity and SERS detection for organic dyes. J Nanomater. 2015;2015:817924.
Kakavandi B, Jonidi A, Rezaei R, Nasseri S, Ameri A, Esrafily A. Synthesis and properties of Fe3O4-activated carbon magnetic nanoparticles for removal of aniline from aqueous solution: equilibrium, kinetic and thermodynamic studies. Iranian J Environ Health Sci Eng. 2013;10:19.
Peng X, Wang Y, Tang X, Liu W. Functionalized magnetic core–shell Fe3O4@SiO2 nanoparticles as selectivity-enhanced chemosensor for Hg (II). Dye Pigment. 2011;91(1):26-32.
Ding HL, Zhang YX, Wang S, Xu JM, Xu SC, Li GH. Fe3O4@ SiO2 core/shell nanoparticles: the silica coating regulations with a single core for different core sizes and shell thicknesses. Chem Mater. 2012;24(23):4572-80.
Hui C, Shen C, Tian J, Bao L, Ding H, Li C, et al. Core-shell Fe3O4@SiO2 nanoparticles synthesized with well-dispersed hydrophilic Fe 3 O 4 seeds. Nanoscale. 2011;3(2):701-5.
Pasandideh EK, Kakavandi B, Nasseri S, Mahvi AH, Nabizadeh R, Esrafili A, et al. Silica-coated magnetite nanoparticles core-shell spheres (Fe3O4@SiO2) for natural organic matter removal. J Environ Heal Sci Eng. 2016;14:1-13.
Lai L, Xie Q, Chi L, Gu W, Wu D. Adsorption of phosphate from water by easily separable Fe3O4@SiO2 core/shell magnetic nanoparticles functionalized with hydrous lanthanum oxide. J Colloid Interface Sci. 2016;465:76-82.
Emadi M, Shams E, Amini MK. Removal of zinc from aqueous solutions by magnetite silica core-shell nanoparticles. J Chem. 2013;2013:787682.
Beg MS, Mohapatra J, Pradhan L, Patkar D, Bahadur D. Porous Fe3O4-SiO2 core-shell nanorods as high-performance MRI contrast agent and drug delivery vehicle. J Magn Magn Mater. 2017;428:340-7.
Farimani MHR, Shahtahmasebi N, Roknabadi MR, Ghows N, Kazemi A. Study of structural and magnetic properties of superparamagnetic Fe3O4/SiO2 core–shell nanocomposites synthesized with hydrophilic citrate-modified Fe3O4 seeds via a sol–gel approach. Phys E Low-dimensional Syst Nanostructures. 2013;53:207-16.
Ghazanfari MR, Kashefi M, Shams SF, Jaafari MR. Perspective of Fe3O4 nanoparticles role in biomedical applications. Biochem Res Int. 2016;2016:7840161.
Zhang L, Shao H, Zheng H, Lin T, Guo Z. Synthesis and characterization of Fe3O4@SiO2 magnetic composite nanoparticles by a one-pot process. Int J Miner Metall Mater. 2016;23(9):1112-8.
Rahmawati R, Taufiq A, Sunaryono S, Fuad A, Yuliarto B, Suyatman S, et al. Synthesis of magnetite (Fe3O4) nanoparticles from iron sands by coprecipitation-ultrasonic irradiation methods. J Mater Environ Sci. 2018;9(3):155-60.
Khatami M, Alijani HQ, Nejad MS, Varma RS. Core@ shell nanoparticles: greener synthesis using natural plant products. Appl Sci. 2018;8(3):411.
Supardi ZAI, Nisa Z, Kusumawati DH, Putri NP, Taufiq A, Hidayat N. Phase transition of SiO2 nanoparticles prepared from natural sand: the calcination temperature effect. J Phys Conf Ser. 2018;1093:012025.
Jal PK, Sudarshan M, Saha A, Patel S, Mishra BK. Synthesis and characterization of nanosilica prepared by precipitation method. Colloids Surfaces A Physicochem Eng Asp. 2004;240(1-3):173-8.
Munasir N, Kusumawati RP, Kusumawati DH, Supardi ZAI, Taufiq A, Darminto D. Characterization of Fe3O4/rGO composites from natural sources: application for dyes color degradation in aqueous solution. Int J Eng. 2020;33(1):18-27.
Terraningtyas A. Synthesis and characterization of Fe3O4/SiO2 composite with in-situ method: TEOS as SiO2 NPs precursor. J Phys Conf Ser. 2019;1171:012050.
Dewanto AS, Yulianingsih A, Saadah IKF, Supardi ZAI, Mufid A, Taufiq A. Composites of Fe3O4@SiO2 from natural material synthesized by co-precipitation method. IOP Conf Ser Mater Sci Eng. 2017;202:012057.
Deng H, Lei Z. Preparation and characterization of hollow Fe3O4/SiO2@ PEG–PLA nanoparticles for drug delivery. Compos Part B Eng. 2013;54:194-9.
Zhang X, Huang Z, Ma B, Wen R, Zhang M, Huang Y, et al. Polyethylene glycol/Cu/SiO 2 form stable composite phase change materials: preparation, characterization, and thermal conductivity enhancement. RSC Adv. 2016;6(63):58740-8.
Byrne JM, Klueglein N, Pearce C, Rosso KM, Appel E, Kappler A. Redox cycling of Fe (II) and Fe (III) in magnetite by Fe-metabolizing bacteria. Science. 2015;347(6229):1473-6.
Drissi SH, Refait P, Abdelmoula M, Génin J-MR. The preparation and thermodynamic properties of Fe (II)/Fe (III) hydroxide-carbonate (green rust 1); Pourbaix diagram of iron in carbonate-containing aqueous media. Corros Sci. 1995;37(12):2025-41.
Nikmah A, Taufiq A, Hidayat A. Synthesis and characterization of Fe3O4/SiO2 nanocomposites. IOP Conf Ser Earth Environ Sci. 2019;276:012046.
Taib S, Suharyadi E. Sintesis Nanopartikel Magnetit (Fe3O4) Dengan Template Silika (SiO2) dan Karakterisasi Sifat Kemagnetannya. Indones J Appl Phys. 2015;5(1):23-30. (In Indonesia)
Morrow BA, McFarlan AJ. Surface vibrational modes of silanol groups on silica. J Phys Chem. 1992;96(3):1395-400.
Quercia G, Lazaro A, Geus JW, Brouwers HJH. Characterization of morphology and texture of several amorphous nano-silica particles used in concrete. Cem Concr Compos. 2013;44:77-92.
Sun S, Liang F, Tang L, Wu J, Ma C. Microstructural investigation of gas shale in Longmaxi formation, Lower Silurian, NE Sichuan basin, China. Energy Explor Exploit. 2017;35(4):406-29.
Trunschke A. Modern Methods in Heterogeneous Catalysis Research: Surface area and pore size determination [Internet]. 2017 [cited 2021 Nov 01]. Available form: http://www.fhi-berlin.mpg.de/acnew/department/pages/teaching/pages/teaching__wintersemester__2017_2018/annette_trunschke__surface_area_and_pore_size_determination__171124.pdf
Ubaid A, Hidayat N. Aging time effect on porous characteristics of natural mud-based silica prepared by hydrothermal-coprecipitation route. IOP Conf Ser Mater Sci Eng. 2017;202:012022.
Zhu M, Diao G. Synthesis of porous Fe3O4 nanospheres and its application for the catalytic degradation of xylenol orange. J Phys Chem C. 2011;115(39):18923-34.
Pirbazari AE, Saberikhah E, Kozani SSH. Fe3O4–wheat straw: preparation, characterization and its application for methylene blue adsorption. Water Resour Ind. 2014;7:23-37.
Tian Q, Wang X, Mao F, Guo X. Absorption performance of DMSA modified Fe3O4@SiO2 core/shell magnetic nanocomposite for Pb 2+ removal. J Cent South Univ. 2018;25(4):709-18.