A comprehensive review on the performance analysis of composite overwrapped pressure vessels

Main Article Content

Rahul B
Dharmahinder Singh Chand
Dharani J

Abstract

In recent decades due to the emerging use of composites, earlier metallic vessels have moved to composite overwrapped design. Even though the weight reduction is possible over earlier metallic vessels, various factors such as fluid-wall interaction, failure modes and effect of winding pattern in composite overwrapped pressure vessels need to be very seriously considered for getting a successful design. This paper provides a detailed review on various works carried by the researchers to evaluate the performance of composite overwrapped pressure vessels under various design and environmental factors. These variables include the geometry factors (size & shape of dome, length of cylindrical section), design factors (winding angle, winding thickness, thickness of the liner & overwrap, materials for liner & overwrap, interviewing), defects (notches, flaws), loading conditions (internal & external pressure, axial load, torsion, impact, fatigue, vibration) and the performance parameters (burst pressure, fatigue life, failure modes, leaks, deformations).

Article Details

How to Cite
B, R., Singh Chand, D., & J, D. (2021). A comprehensive review on the performance analysis of composite overwrapped pressure vessels. Engineering and Applied Science Research, 49(2), 272–287. retrieved from https://ph01.tci-thaijo.org/index.php/easr/article/view/243633
Section
REVIEW ARTICLES

References

Wood WB. NASA firefighters breathing system program report. NASA technical note D-8497. Washington: NASA; 1977.

Park WR, Jeon SK, Kim SM, Kwon OH. A study on the design safety of type III high-pressure hydrogen storage vessel. J Kor Soc Saf. 2019;34(5):7-14.

Somerdayc BP, San March C. Hydrogen containment materials. In: Walker G, editor. Solid-state hydrogen storage. Cambridge: Woodhead Publishing; 2008. p. 51-81.

Alam S, Yandek GR, Lee RC, Mabry J. Design and development of a filament wound composite overwrapped pressure vessel. Compos Open Access. 2020;2:100045.

Meyer HJ, Rath W. Ultrasonic equipment for inspection of reactor pressure vessels in service. Non-Destructive Test. 1974;7(1):19-24.

McGonnagle WJ. Quality control and nondestructive testing in reactor pressure vessel fabrication. Nucl Struct Eng. 1965;2(3):293-300.

Moreton DN, Moffat DG. The effect of proof testing on the behaviour of two stainless steel pressure vessel drumheads. Int J Pres Ves Pip. 1991;48(3):321-30.

Bohatka S, Berecz I, Horkay G, Langer G. Leak detection of high pressure vessels. Vacuum. 1983;33(1-2):17-8.

Yamabe J, Itoga I, Awane T, Matsuo T, Matsunaga H, Matsuoka S. Pressure cycle testing of Cr-Mo steel pressure vessels subjected to gaseous hydrogen. J Pres Ves Technol. 2016;138(1):011401.

San Marchi C, Harris A, Yip M, Somerday BP, Nibur KA. Pressure cycling of steel pressure vessels with gaseous hydrogen. Proceedings of the ASME 2012 Pressure Vessels and Piping Conference; 2012 Jul 15-19; Toronto, Canada. New York: American Society of Mechanical Engineers; 2012. p. 835-44.

Pluvinage G, Capelle J, Schmitt C. Methods for assessing defects leading to gas pipe failure. In: Makhlouf ASH, Aliofkhazraei M, editors. Handbook of materials failure analysis with case studies from the oil and gas industry. UK: Butterworth-Heinemann; 2016. p. 55-89.

Perov S, Altstadt E, Werner M. Vibration analysis of the pressure vessel internals of WWER-1000 type reactors with consideration of fluid-structure interaction. Ann Nucl Energ. 2000;27(16):1441-57.

Sulaiman S, Borazjani S, Tang SH. Finite element analysis of filament-wound composite pressure vessel under internal pressure. IOP Conf Mater Sci Eng. 2013;50(1):012061.

Kuhn M, Himmel N, Maier M. Design and analysis of full composite pressure vessels. Adv Compos Mater Struct. 2000;28:63-72.

Patterson J, DeLay T, Schneider J, Jackson J, Allison P. High pressure COPVs for cryogenic storage applications. 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit; 2006 Jul 9-12; Sacramento, California. Reston: AIAA; 2006. p. 4718.

Schneider J, Dyess M, Hastings C, Patterson J, Noorda J, DeLay T. Lightweight cryogenic composite over-wrapped pressure vessels (COPVS) for launch vehicle applications. 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference; 2007 Apr 23-26; Honolulu, Hawaii. Reston: AIAA; 2007. p. 2148.

Bahadori A. Safety and firefighting equipment, part 1. Personnel protection and safety equipment for the oil and gas industries. USA: Gulf Professional Publishing; 2015. p. 355-431.

Parandhama B, Raju M, Mastaniah T. Design of liquid oxygen storage tank with welded joints and its safety. Int J Mod Eng Res. 2015;5(4):5-10.

Kwak H, Park G, Kim C. Design of compressed natural gas pressure vessel (type ii) to improve storage efficiency and structural reliability. J Pres Ves Technol. 2020;142(1):011303.

Hossam I, Saleh S, Kamel H. Review of challenges of the design of rocket motor case structures. 18th International Conference on Aerospace Sciences & Aviation Technology; 2019 Apr 9-11; Cairo, Egypt. England: IOP Publishing Ltd; 2019.

Combescure A, Hoffman A, Devos J, Baylac G. A review of ten years of theoretical and experimental work on buckling. In: Baylac G, editor. Recent advances in nuclear component testing and theoretical studies on buckling. New York: American Society of Mechanical Engineers; 1984. p. 23-32.

Bisagni C, Cordisco P. Post-buckling and collapse experiments of stiffened composite cylindrical shells subjected to axial loading and torque. Compos Struct. 2006;73(2):138-49.

Obrecht H, Rosenthal B, Fuchs P, Lange S, Marusczyk C. Buckling, post buckling and imperfection-sensitivity: old questions and some new answers. Comput Mech. 2006;37(6):498-506.

MacKay JR, Smith MJ, Van Keulen F, Bosman TN, Pegg NG. Experimental investigation of the strength and stability of submarine pressure hulls with and without artificial corrosion damage. Mar Struct. 2010;23(3):339-59.

Albus J, Gomez Garcia J, Oery H. Control of assembly induced stresses and deformation due to waviness of the interface flanges of the ESC-an upper stage. Proceedings of the 52nd International Astronautical Congress; 2001 Oct 1-5; Toulouse, France. Paris: The International Astronautical Federation. p. 1-9.

Blachut J. Buckling of cylinders with imperfect length. J Pres Ves Technol. 2014;137(1):011203.

Mathon C, Limam A. Experimental collapse of thin cylindrical shells submitted to internal pressure and pure bending. Thin Wall Struct. 2005;44(1):39-50.

Kundu CK, Sinha PK. Post buckling analysis of laminated composite shells. Compos Struct. 2007;78(3):316-24.

Moon C, Kim I, Choi B, Kweon J, Choi J. Buckling of filament-wound composite cylinders subjected to hydrostatic pressure for underwater vehicle applications. Compos Struct. 2010;92(9):2241-51.

Sajjady SA, Rahnama S, Lotfi M, Nosouhi R. Numerical analysis of delamination buckling in composite cylindrical shell under uniform external pressure: cohesive element method. J Mod Process Manuf Prod. 2017;6(3):77-96.

Kechun S, Guang P. Optimizing the buckling strength of filament winding composite cylinders under hydrostatic pressure. J Reinforc Plast Compos. 2018;37(13):892-904.

Schonberg WP. Rupture of a cryogenic composite overwrapped pressure vessel following a high-speed particle impact. Aerospace. 2018;5(1):20.

Schonberg WP. Effect of internal stress fields on the perforation response of dual-wall structures under hypervelocity impact. Int J Impact Eng. 1993;14(1-4):637-46.

Schonberg WP, Ratliff JM. Hypervelocity impact of a pressurized vessel: comparison of ballistic limit equation predictions with test data and rupture limit equation development. Acta Astronautica. 2015;115:400-6.

Cherniaev A, Telichev I. Numerical simulation of impact damage induced by orbital debris on shielded wall of composite overwrapped pressure vessels. Appl Compos Mater. 2014;21(6):861-84.

Cherniaev A, Telichev I. Experimental and numerical study of hypervelocity impact damage in composite materials fabricated by filament winding. Int J Impact Eng. 2016;98:19-33.

Rafiee R, Rashedi H, Rezaee S. Theoretical study of failure in composite pressure vessels subjected to low-velocity impact and internal pressure. Front Struct Civ Eng. 2020;14(9):1349-58.

Lasn K, Vedvik NP, Echtermeye AT. The sensitivity of the burst performance of impact damaged pressure vessels to material strength properties. IOP Conference Series: Materials Science and Engineering 37th Riso International Symposium on Materials Science; 2016 Sep 5-8; Riso, Denmark. England: IOP Publishing Ltd; 2016.

Cherniaeva A, Telicheva I. Introducing manufacturing features into numerical modeling of hypervelocity impact damage of composite pressure vessels. Procedia Eng. 2017;204:484-91.

Rafiee R, Ghorbanhosseini A, Rezaee S. Theoretical and numerical analyses of composite cylinders subjected to the low velocity impact. Compos Struct. 2019;226(9):111230.

Musthak M, Madhavi M, Valli PM. Study of inter-laminar behaviour of geodesic wound composite pressure vessel by higher order shear deformation theories and finite element analysis. Int J Compos Mater. 2019;9(3):60-8.

Thattil MJ, Pany C. Design and analysis of pressure vessel with different end domes. Int J Sci Eng Technol Res. 2017;6(8):1225-33.

Nowak T, Schmidt J. Theoretical, numerical and experimental analysis of thick walled fiber metal laminate tube under axisymmetric loads. Compos Struct. 2015;131:637-44.

William LK. Structural analysis of Helios filament-wound tanks subjected to internal pressure and cooling. USA: Washington; 2005.

Zheng JY, Liu PF. Elasto-plastic stress analysis and burst strength evaluation of Al-carbon fiber/epoxy composite cylindrical laminates. Comput Mater Sci. 2008;42(3):453-61.

Son DS, Chang SH. Evaluation of modeling techniques for a type III hydrogen pressure vessel (70 MPa) made of an aluminum liner and a thick carbon/epoxy composite for fuel cell vehicle. Int J Hydrogen Energ. 2012;37(3):2353-69.

Moskvichev E. Numerical modeling of stress-strain behavior of composite overwrapped pressure vessel. Procedia Struct Integrity. 2016;2:2512-8.

Wu QG, Chen XD, Fan ZC, Nie DF. Stress and damage analyses of composite overwrapped pressure vessel. Procedia Eng. 2015;130:32-40.

Washabaugh A, Martin C, Lyons R, Grundy D, Goldfine N, Russell R. Stress monitoring for composite overwrapped pressure vessels using MWM-arrays. Airworthiness Conference; 2015 Mar 30-Apr 2; Baltimore, USA. USA: Jentek Sensors Inc; 2015.

Hufenbach W, Bohm R, Thieme M, Tyczynski T. Damage monitoring in pressure vessels and pipelines based on wireless sensor networks. Procedia Eng. 2011;10:340-5.

Porziani S, Augugliaro G, Brini F, Brutti C, Chiappa A, Groth C, et al. Structural integrity assessment of pressure equipment by acoustic emission and data fractal analysis. Procedia Struct Integrity. 2020;25:246-53.

McKeon P. A fundamental study to enable ultrasonic structural health monitoring of a thick-walled composite over-wrapped pressure vessel [dissertation]. Atlanta: Georgia Institute of Technology; 2014.

Zhou W, Wu Z, Mevel L. Vibration-based damage detection to the composite tank filled with fluid. Struct Health Monit. 2010;9(5):433-45.

Budiansky B. Sloshing of liquids in circular canals and spherical tanks. J Aero Sci. 1960;27(3):161-73.

Kunzler M, Udd E, Johnson M, Mildenhall K. Use of multidimensional fiber grating strain sensors for damage detection in composite pressure vessels. Proc Smart Struct Mater. 2005;5758:83-92.

Klute SM, Metrey DR, Garg N, Rahim NAA. In-situ structural health monitoring of composite-overwrapped pressure vessels. Sample J. 2016;52(2):7-17.

Sanchez JC, Quero F, Hernandez E, Ortega A, Latapia J, Bea JA, at el. Structural health monitoring techniques for damage detection in hydrogen pressure vessels. The 5th International Conference on Hydrogen Safety; 2013 Sep 9-11; Brussels, Belgium. p. 1-6.

Zhenyang Ding, Chenhuan Wang, Kun Liu, Junfeng Jiang, Di Yang, Guanyi Pan, Zelin Pu, Tiegen Liu. Distributed Optical Fiber Sensors Based on Optical Frequency Domain Reflectometry: A Review. Sensors. 2018; 18(4):1072.

Huang T, Schroder K. A hybrid damage detection system for composite pressure vessel. 21st International Conference on Composite Materials; 2017 Aug 20-25; Xi’an, China; 2017.

Rafiee R, Torabi MA. Stochastic prediction of burst pressure in composite pressure vessels. Compos Struct. 2018;185:573-83.

Onder A, Sayman O, Dogan T, Tarakçıoglu N. Burst failure load of composite pressure vessels. Compos Struct. 2009;89(1):159-66.

Wang L, Zheng C, Luob H, Wei S, Wei Z. Continuum damage modeling and progressive failure analysis of carbon fiber/epoxy composite pressure vessel. Compos Struct. 2015;134(15):475-82.

Kang H, He P, Zhang C, Dai Y, Lv H, Zhang M, et al. Stress-strain and burst failure analysis of fiber wound composite material high-pressure vessel. Polymer Polymer Compos. In press 2020.

Chauhan GS, Awasthi A. Design and analysis of high pressure composite vessels. Int J Latest Eng Manag Res. 2018;3(6):96-102.

Satheesh Kumar N, Sreekumar A, Muthuraju N, Praveen PI, Ravichandran S, Sadeesh Kumar A, et al. Carbon composite overwrapped titanium lined gas bottle and its qualification for high pressure gaseous hydrogen scramjet applications. J Aerospace Sci Technol. 2018;70:(3A):294-9.

Leh D, Saffre P, Francescato P, Arrieux R, Villalonga S. A progressive failure analysis of a 700-bar type IV hydrogen composite pressure vessel. Int J Hydrogen Energ. 2015;40(38):13206-14.

Lasn K, Mulelid M. The effect of processing on the microstructure of hoop-wound composite cylinders. J Compos Mater. 2020;54(26):3981-97.

Rojek J, Joannes S, Mavrogordato M, Laiarinandrasana L, Bunsell A, Thionnet A. Modelling the effect of porosity on the mechanical properties of unidirectional composites, The case of thick-walled pressure vessels. ECCM 18-18th European conference on composite materials; 2018 Jun 24-28; Athens, Greece. 2018. p. 7.

Chou HY, Mouritz AP, Bannister MK, Bunsell AR. Acoustic emission analysis of composite pressure vessels under constant and cyclic pressure. Compos Appl Sci Manuf. 2014;70:111-20.

Karami P, Tabatabaei S, Zangaraki R, Mahmoud MM. Experimental and numerical analyses of progressive damage in non-circular metal-composite hybrid vessels under internal pressure. Int J Damage Mech. 2015;24(8):1261-79.

Pinto M, Gupta S, Shukla A. Study of implosion of carbon/epoxy composite hollow cylinders using 3-D digital image correlation. Compos Struct. 2015;119:272-86.

Kang SG, Kim MG, Park SW, Kim CG, Kong CW. Damage analysis of a type 3 cryogenic propellant tank after LN2 storage test. J Compos Mater. 2008;42(10):975-92.

Zhang M, Lv H, Kang H, Zhou W, Zhang C. A literature review of failure prediction and analysis methods for composite high-pressure hydrogen storage tanks. Int J Hydrogen Energ. 2019;44(47):25777-99.

Sapi Z, Butler R. Properties of cryogenic and low temperature composite materials-a review. Cryogenics. 2020;111:103190.

Czapliski T, Maciejewski L, Zietek G. Modeling of high pressure composite vessels. 10th International Conference on Composite Science and Technology; 2015 Sep 2-4; Lisboa, Portugal. p. 1-11.

Magneville B, Gentilleau B, Villalonga S, Nony F, Galiano H. Modeling, parameters identification and experimental validation of composite materials behavior law used in 700 bar type IV hydrogen high pressure storage vessel. Int J Hydrogen Energ. 2015;40(38):13193-205.

Almeida JH, Faria H, Marques A, Amico S. Load sharing ability of the liner in type III composite pressure vessels under internal pressure. J Reinforc Plast Compos. 2014;33(24):2274-86.

Varun Chandran B, Tiwari SB, Suresh R, Krishnadasan CK, Sivasubramonian B, Anoop Kumar S. Design and analysis of composite overwrapped pressure vessel. Proceedings of International Conference on Materials for the Future-Innovative Materials, Processes Products and Applications; 2013 Nov 6-8: Thrissur, India.

Marzbanrad J, Paykani A, Afkar A, Ghajar M. Finite element analysis of composite high-pressure hydrogen storage vessels. J Mater Environ Sci. 2013;4(1):63-74.

Sayman O. Analysis of multi-layered composite cylinders under hydrothermal loading. Compos Appl Sci Manuf. 2005;36(7):923-33.

Ansari R, Alisafaei F, Ghaedi P. Dynamic analysis of multi-layered filament-wound composite pipes subjected to cyclic internal pressure and cyclic temperature. Compos Struct. 2010;92(5):1100-9.

Kim JS, Bae K, Lee C, Kim Y, Kim W, Kim I. Fatigue life evaluation of composite material sleeve using a residual stiffness model. Int J Fatig. 2017;101:86-95.

Rafiee R, Abbasi F, Maleki S. Fatigue analysis of a composite ring: experimental and theoretical investigations. J Compos Mater. 2020;54(26):4011-24.

Rafiee R, Eslami F. Theoretical modeling of fatigue phenomenon in composite pipes. Compos Struct. 2017;161:256-63.

Lin S, Jia X, Sun H, Sun H, Hui D, Yang X. Thermo-mechanical properties of filament wound CFRP vessel under hydraulic and atmospheric fatigue cycling. Compos B Eng. 2013;46:227-33.

Rafiee R. Stochastic fatigue analysis of glass fiber reinforced polymer pipes. Compos Struct. 2017;167:96-102.

ASTM. ASTM D3517-06, Standard specifications for ‘‘Fibergalss’’ (glass-fiber reinforced thermosetting-resin). Philadelphia: American Society for Testing and Materials; 2006.

Rafiee R, Abbasi F. Numerical and experimental analyses of the hoop tensile strength of filament-wound composite tubes. Mech Compos Mater. 2020;56(4):423-36.

Rafiee R. Experimental and theoretical investigations on the failure of the filament wound GRP pipes. Compos B Eng. 2013;45(1):257-67.

Shabania P, Taheri-Behrooz F, Maleki S, Hasheminasab M. Life prediction of a notched composite ring using progressive fatigue damage models. Compos B Eng. 2019;165(C):754-63.

Madhavi M, Rao KVJ, Narayana RK. Design and analysis of filament wound composite pressure vessel with integrated-end domes. Defence Sci J. 2009;59(1):73-81.

Rafiee R, Torabi MA, Maleki S. Investigating structural failure of a filament-wound composite tube subjected to internal pressure: experimental and theoretical evaluation. Polymer Test. 2018;67:322.

Vasiliev VV, Morozov EV. Advanced mechanics of composite materials and structures. 4th ed. Netherlands: Elsevier; 2018.

Hwang TK, Kim HG. Experimental and analytical approach for the size effect on the fiber strength of CFRP. Polymer Compos. 2013;34(4):443-606.

Zheng CX, Yang F, Zhu As. Mechanical analysis and reasonable design for Ti-Al alloy liner wound with carbon fiber resin composite high pressure vessel. J Zhejiang Univ Sci A. 2009;10(3):384-91.

Lisboa TV, Almeida JH, Dalibor IH, Spickenheuer A, Marczak R, Amico S. The role of winding pattern on filament wound composite cylinders under radial compression. Polymer Compos. 2020;41(6):2446-54.

Behera S, Sahoo S, Srivastava L, Gopal A. Structural integrity assessment of filament wound composite pressure vessel using through transmission technique. Procedia Struct Integrity. 2019;14:112-8.

Fakoor M, Ghoreishi SMN, Khansari NM. Investigation of composite coating effectiveness on stress intensity factors of cracked composite pressure vessels. J Mech Sci Technol. 2016;30(7):3119-26.

Park WR, Fatoni NF, Kwon OH. Evaluation of stress and crack behavior using the extended finite element method in the composite layer of a type III hydrogen storage vessel. J Mech Sci Technol. 2018;32(5):1995-2002.

Halawa M, Al-Huniti N. Optimum design of carbon/epoxy composite pressure vessels including moisture effects. J Compos Sci. 2019;3(3):65-76.

Hossam I, Saleh S, Kamel H. Review of challenges of the design of rocket motor case structures. IOP Conf Mater Sci Eng. 2019;610:012019.

Lugovtsova Y, Prager J. Structural health monitoring of composite pressure vessels using guided ultrasonic waves. Insight Non Destructive Test Condition Monit. 2018;60(3):139-44.

Zu L, Xu H, Zhang B, Li D, Zi B, Zhang B. Design and production of filament-wound composite square tubes. Compos Struct. 2018;191:202-8.

Vasiliev V, Krikanov AA, Razin A. New generation of filament-wound composite pressure vessels for commercial applications. Compos Struct. 2003;62(3):449-59.

Almeida JH, Ribeiro ML, Tita V, Amico S. Stacking sequence optimization in composite tubes under internal pressure based on genetic algorithm accounting for progressive damage. Compos Struct. 2017;178:20-6.

Guo K, Wen L, Xiao J, Lei M, Wang S, Zhang C, et al. Design of winding pattern of filament-wound composite pressure vessel with unequal openings based on non-geodesics. J Eng Fibers Fabric. 2020;15:1-17.

Thesken JC, Murthy P, Phoenix SL, Beeson H, Greene N, Palko J, et al. A theoretical investigation of composite overwrapped pressure vessel (COPV) mechanics applied to NASA full scale tests. NASA Technical reports server. Washington: NASA; 2006.

El Moussaid M, Wahl JC, Perry N. Development of structuring model of wound composite vessel dome. 20th International Conference on Composite Materials; 2015 Jul 19-24; Copenhagen, Denmark. France: Archive Ouverte HAL; 2015. p. 1-11.

Yue Z, Li X. Numerical simulation of all composite compressed natural gas cylinders for vehicle. Procedia Eng. 2012;37:31-6.

Francescato P, Gillet A, Leh D, Saffre P. Comparison of optimal design methods for type 3 high-pressure storage tanks. Compos Struct. 2012;94(6):2087-96.