Strength, thermal conductivity and sound absorption of cellular lightweight high calcium fly ash geopolymer concrete

Main Article Content

Athika Wongkvanklom
Patcharapol Posi
Pornnapa Kasemsiri
Vanchai Sata
Trinh Cao
Prinya Chindaprasirt

Abstract

In this research, the effects of foam content on mechanical property, thermal property and sound absorption of cellular lightweight geopolymer concrete (CLGC) were studied. The geopolymer mixtures were made with 15 M NaOH solution, sodium silicate/NaOH ratio (NS/NaOH) of 1.00, sand/ash ratio of 1.25, liquid/fly ash ratio of 0.4. The foam contents were varied from 2-12 %wt. The 28-day compressive strength of CLGCs of 2.7-57.8 MPa, unit weight of 844-2100 kg/m3, water absorption of 1.36-31.25%, porosity of 2.82-49.42%, thermal conductivity of 0.13-1.62 W/mK, and sound absorption coefficients of 0.05-0.5 were obtained. The CLGCs with 4% foam content, 28-day compressive strength of 38.9 MPa and unit weight of 1815 kg/m3 is suitable for structural lightweight concrete complying to the requirements of ASTM C330/C330M-17a. Whereas the mix with 8 and 10 % foam contents with compressive strengths of 7.60 and 6.1 MPa, and unit weights of 1210 and 1060 kg/m3 are suitable for use as masonry lightweight concrete block in accordance with ASTM C331/C331M-17.

Article Details

How to Cite
Wongkvanklom, A. . ., Posi, P., Kasemsiri, P. ., Sata, V. ., Cao, T. ., & Chindaprasirt, P. . (2021). Strength, thermal conductivity and sound absorption of cellular lightweight high calcium fly ash geopolymer concrete. Engineering and Applied Science Research, 48(4), 487–496. Retrieved from https://ph01.tci-thaijo.org/index.php/easr/article/view/243363
Section
ORIGINAL RESEARCH

References

Neville AM, Brooks JJ. Concrete technology. 2nd ed. New York: Longman Scientific & Technical; 1987.

Demirboga R, Gul R. The effects of expanded perlite aggregate, silica fume and fly ash on the thermal conductivity of lightweight concrete. Cement Concr Res. 2003;33(5):723-27.

Kim HK, Jeon JH, Lee HK. Workability, and mechanical, acoustic and thermal properties of lightweight aggregate concrete with a high volume of entrained air. Construct Build Mater. 2012;29:193-200.

Posi P, Lertnimoolchai S, Sata V, Phoo-ngernkham T, Chindaprasirt P. Investigation of properties of lightweight concrete with calcined diatomite aggregate. KSCE J Civ Eng. 2014;18(5):1429-35.

ASTM. ASTM C330/C330M-17a, Standard specification for lightweight aggregates for structural concrete. West Conshohocken: ASTM International; 2017.

Amran YHM, Farzadnia N, Ali AAA. Properties and applications of foamed concrete; a review. Construct Build Mater. 2015;101(1):990-1005.

Narayanan N, Ramamurthy K. Structure and properties of aerated concrete: a review. Cement Concr Compos. 2000;22(5):321-29.

Othuman MA, Wang YC. Elevated-temperature thermal properties of lightweight foamed concrete. Construct Build Mater. 2011;25(2):705-16.

Piyaphanuwat R, Ruayruay E. Using lime and fly ash replaced OPC in lightweight concrete with aluminum dust and pure aluminum. Eng Appl Sci Res. 2012;39:139-45.

Xu Z, Chen Z, Yang S. Effect of a new type of high-strength lightweight foamed concrete on seismic performance of cold-formed steel shear walls. Constr Build Mater. 2018;181:287-300.

Bing C, Zhen W, Ning L. Experimental research on properties of high-strength foamed concrete. J Mater Civ Eng. 2012;24(1):113-18.

Panesar DK. Cellular concrete properties and the effect of synthetic and protein foaming agents. Construct Build Mater. 2013;44:575-84.

Chindaprasirt P, Chareerat T, Sirivivatnanon V. Workability and strength of coarse high calcium fly ash geopolymer. Cement Concr Compos. 2007;29(3):224-29.

Malhotra VM. Introduction: Sustainable development and technology concrete technology. Concr Int. 2002;24(7):1-22.

Zhang Z, Provis JL, Zou J, Reid A, Wang H. Toward an indexing approach to evaluate fly ashes for geopolymer manufacture. Cement Concr Res. 2016;85:163-73.

Xi F, Davis SJ, Ciais P, Crawford-Brown D, Guan D, Pade C, et al. Substantial global carbon uptake by cement carbonation. Nat Geosci. 2016;9(12):880-3.

Davidovits J. Geopolymers - Inorganic polymeric new materials. J Therm Anal. 1991;37(8):1633-56.

Sathonsaowaphak A, Chindaprasirt P, Pimraksa K. Workability and strength of lignite bottom ash geopolymer mortar. J Hazard Mater. 2009;168(1):44-50.

Rattanasak U, Chindaprasirt P. Influence of NaOH solution on the synthesis of fly ash geopolymer. Miner Eng. 2009;22(12):1073-78.

Hanjitsuwan S, Injorhor B, Phoo-ngernkham T, Damrongwiriyanupap N, Li L-Y, Sukontasukkul P, et al. Drying shrinkage, strength and microstructure of alkali-activated high-calcium fly ash using FGD-gypsum and dolomite as expansive additive. Cement Concr Compos. 2020;114:103760.

Somna K, Jaturapitakkul C, Kajitvichyanukul P, Chindaprasirt P. NaOH-activated ground fly ash geopolymer cured at ambient temperature. Fuel. 2011;90(6):2118-24.

Guo X, Shi H, Dick WA. Compressive strength and microstructural characteristics of class C fly ash geopolymer. Cement Concr Compos. 2010;32(2):142-7.

Chindaprasirt P, De Silva P, Sagoe-Crentsil K, Hanjitsuwan S. Effect of SiO2 and Al2O3 on the setting and hardening of high calcium fly ash-based geopolymer systems. J Mater Sci. 2012;47(12):4876-83.

Kadela M, Kukiełka A, Małek M. Characteristics of lightweight concrete based on a synthetic polymer foaming agent. Mater (Basel). 2020;13(21):4979.

Chen B, Liu N. A novel lightweight concrete-fabrication and its thermal and mechanical properties. Construct Build Mater. 2013;44:691-8.

ASTM. ASTM C618-19, Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. West Conshohocken: ASTM International; 2012.

ASTM. ASTM C138/C138M-17a, Standard test method for density (unit weight), yield, and air content (gravimetric) of concrete. West Conshohocken: ASTM International; 2014.

ASTM. ASTM C109/C109M-20b, Standard test method for compressive strength of hydraulic cement mortars (using 2-in. or [50-mm] cube specimens). West Conshohocken: ASTM International; 2016.

Broadhurst D. Transition to an elastomeric infusion pump in home care: An evidence-based approach. J Infusion Nurs. 2012;35(3):143-51.

ASTM. ASTM D5930-17, Standard test method for thermal conductivity of plastics by means of a transient line-source technique. West Conshohocken: ASTM International; 2009.

Shin AHC, Kodide U. Thermal conductivity of ternary mixtures for concrete pavements. Cement Concr Compos. 2012;34(4):575-82.

Wongkeo W, Thongsanitgarn P, Pimraksa K, Chaipanich A. Compressive strength, flexural strength and thermal conductivity of autoclaved concrete block made using bottom ash as cement replacement materials. Mater Des. 2012;35:434-39.

Zaetang Y, Wongsa A, Sata V, Chindaprasirt P. Use of lightweight aggregates in pervious concrete. Construct Build Mater. 2013;48:585-91.

Posi P, Ridtirud C, Ekvong C, Chammanee D, Janthowong K, Chindaprasirt P. Properties of lightweight high calcium fly ash geopolymer concretes containing recycled packaging foam. Construct Build Mater. 2015;94:408-13.

Park SB, Seo DS, Lee J. Studies on the sound absorption characteristics of porous concrete based on the content of recycled aggregate and target void ratio. Cement Concr Res. 2005;35(9):1846-54.

Meriç C, Erol H, Ozkan A. On the sound absorption performance of a felt sound absorber. Appl Acoust. 2016;114:275-80.

ASTM. ASTM E1050-12, Standard test method for impedance and absorption of acoustical materials using a tube, two microphones and a digital frequency analysis system. West Conshohocken: ASTM International; 2012.

Kearsley EP, Wainwright PJ. The effect of porosity on the strength of foamed concrete. Cement Concr Res. 2002;32(2):233-39.

Jitchaiyaphum K, Sinsiri T, Chindaprasirt P. Cellular lightweight concrete containing pozzolan materials. Procedia Eng. 2011;14:1157-64.

Al Bakri Abdullah MM, Hussin K, Bnhussain M, Ismail KN, Yahya Z, Razak RA. Fly ash-based geopolymer lightweight concrete using foaming agent. Int J Mol Sci. 2012;13(6):7186-98.

Liu MYJ, Alengaram UJ, Jumaat MZ, Mo KH. Evaluation of thermal conductivity, mechanical and transport properties of lightweight aggregate foamed geopolymer concrete. Energy Build. 2014;72:238-45.

Huiskes DMA, Keulen A, Yu QL, Brouwers HJH. Design and performance evaluation of ultra-lightweight geopolymer concrete. Mater Des. 2016;89:516-26.

Shawnim PA, Mohammad F. Compressive strength of foamed concrete in relation to porosity using SEM images. J Civ Eng Sci Tech. 2019;10(1):34-44.

Hilal AA, Thom NH, Dawson AR. On void structure and strength of foamed concrete made without/with additives. Construct Build Mater. 2015;85:157-64.

Phoo-ngernkham T, Chindaprasirt P, Sata V, Hanjitsuwan S, Hatanaka S. The effect of adding nano-SiO2 and nano-Al2O3 on properties of high calcium fly ash geopolymer cured at ambient temperature. Mater Des. 2014;55:58-65.

Tho-in T, Sata V, Chindaprasirt P, Jaturapitakkul C. Pervious high-calcium fly ash geopolymer concrete. Construct Build Mater. 2012;30:366-71.

ASTM. ASTM C331/C331M-17, Standard specification for lightweight aggregates for concrete masonry units. West Conshohocken: ASTM International; 2017.

Sukontasukkul P. Use of crumb rubber to improve thermal and sound properties of pre-cast concrete panel. Construct Build Mater. 2009;23(2):1084-92.

Dulsang N, Kasemsiri P, Posi P, Hiziroglu S, Chindaprasirt P. Characterization of an environment friendly lightweight concrete containing ethyl vinyl acetate waste. Mater Des. 2016;96:350-56.

Grabiec AM, Zawal D, Szulc J. Influence of type and maximum aggregate size on some properties of high-strength concrete made of pozzolana cement in respect of binder and carbon dioxide intensity indexes. Construct Build Mater. 2015;98:17-24.

Demirboga R. Thermal conductivity and compressive strength of concrete incorporation with mineral admixtures. Build Environ. 2007;42(7):2467-71.

British Cement Association. Foamed concrete - composition and properties, Ref. 46.042. Camberley: British Cement Association; 1994.

Uysal H, Demirboga R, Şahin R, Gul R. The effects of different cement dosages, slumps, and pumice aggregate ratios on the thermal conductivity and density of concrete. Cement Concr Res. 2004;34(5):845-48.

Topçu IB, Uygunoglu T. Properties of autoclaved lightweight aggregate concrete. Build Environ. 2007;42(12):4108-16.

Kim KH, Jeon SE, Kim JK, Yang S. An experimental study on thermal conductivity of concrete. Cement Concr Res. 2003;33(3):363-71.

Nambiar EKK, Ramamurthy K. Air-void characterisation of foam concrete. Cement Concr Res. 2007;37(2):221-30.

Zhang Z, Provis JL, Reid A, Wang H. Mechanical, thermal insulation, thermal resistance and acoustic absorption properties of geopolymer foam concrete. Cement Concr Compos. 2015;62:97-105.

Kim HK, Lee HK. Acoustic absorption modeling of porous concrete considering the gradation and shape of aggregates and void ratio. J Sound Vib. 2010;329(7):866-79.

Kim HK, Lee HK. Influence of cement flow and aggregate type on the mechanical and acoustic characteristics of porous concrete. Appl Acoust. 2010;71(7):607-15.

Laukaitis A, Fiks B. Acoustical properties of aerated autoclaved concrete. Appl Acoust. 2006;67(3):284-96.

Phoo-ngernkham T, Phiangphimai C, Intarabut D, Hanjitsuwan S, Damrongwiriyanupap N, Li L, et al. Low cost and sustainable repair material made from alkali-activated high-calcium fly ash with calcium carbide residue. Construct Build Mater. 2020;247:118543.