Design and optimization of the process parameters for friction stir welding of dissimilar aluminium alloys
Main Article Content
Abstract
Friction Stir Welding (FSW) is one of the unique solid state welding technique that is fast gaining importance because of its ability to produce strong joints. The friction stir welding technique is effectively used in this research to join 5 mm thick dissimilar aluminium alloys of AA 7075-O and AA 5052-O grade. The effect of tool pin profile and tool rotational speed on the mechanical properties like micro-hardness and tensile strength are studied by the optimized Design of Experiments (DOE). The experiments are designed based on L16 orthogonal array considering TAGUCHI techniques for four design parameters and four parametric levels. The outcomes of experimental techniques are tabulated and TAGUCHI analysis, Analysis of Variance (ANOVA) are carried out in Minitab software. From the experimental results and statistical techniques, the methodology is validated and the outcomes of the experiments are found to be in close agreement with the statistical results with the error less than 5% of the mean difference value. The optimized process parameters for better micro hardness are as follows: tool rotational speed of 1200 rpm, feed of 120 mm/min, tool offset of 1 mm, and cylindrical tapered pin tool profile; while the optimized design of process parameters for better tensile strength are as follows: tool rotational speed of 1400 rpm, feed of 120 mm/min, tool offset of 1 mm and cylindrical tapered pin profile. The design and optimization of the process parameters for friction stir welding of dissimilar aluminium alloys is necessary for high strength weld joints.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Hassan AEl-H, Abla El-M. Friction stir welding of dissimilar aluminum alloys. World J Eng Tech. 2018;6(02):408-19.
Santhosh N, Mahamad MR. Thermomechanical modeling and experimental evaluation of friction stir welds of aluminium AA6061 alloy. Int J Eng Res Tech. 2013;2(8):1494-9.
Kundu J, Singh H. Friction stir welding of dissimilar AL alloys: effect of process parameters on mechanical properties. Eng Solid Mech. 2016;4(3):125-32.
Sadesh P, Venkatesh KM, Rajkumar V, Avinash P. Studies on friction stir welding of AA2024 and AA6061 dissimilar metals. Procedia Eng. 2014;75:145-9.
Abdollahzadeh A, Shokuhfar A, Omidvar H, Cabrera JM, Solonin A, Ostovari A, et al. Structural evaluation and mechanical properties of AZ31/SiC nano-composite produced by friction stir welding process at various welding speeds. Proc Inst Mech Eng J Mater Des Appl. 2019;233(5):831-41.
Rao HM. Effect of process parameters on mechanical properties of friction stir spot welded magnesium to aluminum alloy. Mater Des. 2015;15:1-34.
Selamat NFM, Baghadi AH, Sajuri Z. Friction stir welding of similar and dissimilar aluminum alloys for automotive application. Int J Automot Mech Eng. 2016;13(2):3401-12.
Santhosh N, Ramesha K. Mechanical and thermal characterization of friction stir weld joints of Al-Mg Alloy. Int J Res Aeronaut Mech Eng. 2017;(Special):443-53.
Shahabuddin, Dwivedi VK. Effect of tool geometry of friction stir welding on mechanical properties of AA-7075 aluminum alloy. Int J Mech Eng Tech. 2018;9(6):625-33.
Sun SJ, Kim JS, Lee WG, Lim JY, Go Y, Kim YM. Influence of friction stir welding on mechanical properties of butt joints of AZ61 magnesium alloy. Adv Mater Sci Eng. 2017;(6):1-13.
Hoseinlaghaba S, Mirjavadia SS, Sadeghiana N, Jalilib I, Azarbarmasc M, Kazem M, et al. Influences of welding parameters on the quality and creep properties of friction stir welded polyethylene plates. Mater Des. 2015;67:369-78.
Rajashekar R, Mudabir, Rajaprakash BM. Thermomechanical modeling and experimental evaluation to study peak temperature and flow stress of friction stir welds of aluminum alloy 6061. Int J Eng Res Tech. 2014;3(07):1492-500.
Neto DM, Neto P. Numerical modelling of friction stir welding process: a literature review. Int J Adv Manuf Tech. 2013;65(4):115-26.
Chen CM, Kovacevic R. Finite element modelling of friction stir welding - thermal and thermomechanical analysis. Int J Mac. Tools Manuf. 2003;43(13):1319-26.
Rajakumar S, Muralidharan C, Balasubramanian V. Influence of friction stir welding process and tool parameters on strength properties of AA7075-T6 aluminium alloy joints. Int J Mater Des. 2011;32(2):535-49.
Schneider R, Heine B, Grant RJ. Mechanical behaviour of commercial aluminium wrought alloys at low temperatures. In: Monteiro WA, editor. Light Metal Alloys Applications. Croatia: InTech; 2014. p. 61-76.
Sheikhi S, Bolfarini C. Preliminary study on the microstructure and mechanical proper-ties of dissimilar friction stir welds in aircraft aluminium alloys 2024-T351 and 6061-T4. J Mater Process Tech. 2007;206(1-3): 132-42.
Koilraj M, Sundareswaran V, Vijayan S, Koteswara Rao SR. Friction stir welding of dis-similar aluminium alloys AA 2219 to AA 5083 - optimization of process parameters using Taguchi technique. Mater Des. 2012;42:1-7.
Xue P, Ni DR, Wang D, Xiao BL, Ma XY. Effect of friction stir welding parameters on the microstructure and mechanical properties of the dissimilar Al-Cu joints. Mater Sci Eng. 2011;528(13):4683-9.
Li Y, Murr LE, Mcclure JC. Flow visualization and residual microstructures associated with the frictions stir welding of 2024 aluminium to 6061 aluminium. Mater Sci Eng. 1999;271(1-2):213-23.
Buffa G, Huaa J, Shivpuri R, Fratini L. Design of the friction stir weld using the con-tinuum based FEM model. Mater Sci Eng. 2006;419(2):381-8.
Mishra RS, Ma ZY. Friction stir welding and processing. Mater Sci Eng R Rep. 2005;50(1):1-78.
Arora A, Debroy T. Toward optimum friction stir welding tool shoulder diameter. Scripta Mater. 2011;64(1):9-12.
Heidarzadeh A, Khoaverdizadeh H, Mahmoudi A, Nazari E. Tensile behaviour of friction stir welded AA 6061-T4 aluminium alloy joints. Mater Des. 2012;37:166-73.
Rao P. Microstructure and mechanical properties of friction stir lap welded aluminium alloy AA 2014. J Mater Sci Tech. 2011;28(5):414-26.
Kumbhar NT, Sahoo SK, Samajdar I, Dey GK, Bhanumurthy K. Microstructure and micro textural studies of friction stir welded aluminium alloy 5052. Mater Des. 2011;32(3):1657-66.
Ambriz RR, Jaramillo D. Mechanical behavior of precipitation hardened aluminium alloy welds. In: Monteiro WA, editor. Light Metal Alloys Applications. Croatia: InTech; 2014. p. 36-59.
Vilica P, Telmo G Santos. Non-destructive techniques for detecting imperfections in friction stir welds of aluminium alloys. In: Kvackaj T, editor. Aluminium Alloys Theory and Applications. Croatia: InTech; 2011. p. 94-114.
Sun SJ, Kim JS, Lee WG, Lim JY, Go Y, Kim YM. Influence of friction stir welding on mechanical properties of butt joints of AZ61magnesium alloy. Adv Mater Sci Eng. 2017;2017(6)1-13.
Sedaghati A, Bouzary H. A study on the effect of cooling on microstructure and mechanical properties of friction stir-welded AA5086 aluminum butt and lap joints. Proc IME J Mater Des Appl. 2019;233(6):1156-65.
Kalvala PR, Akram J, Ramachandran MMD, Gabbita JR. Low temperature friction stir welding of P91 steel. Defence Tech. 2016;12(4):285-9.
Abdollahzadeh A, Shokuhfar A, Omidvar H, Cabrera JM, Solonin A, Ostovari A, et al. Structural evaluation and mechanical properties of AZ31/SiC nano-composite produced by friction stir welding process at various welding speeds. Proc IME J Mater Des Appl. 2019;233(5):831-41.
Rathinasuriyan C, Senthil Kumar VS. Experimental investigation of weld characteristics on submerged friction stir welded 6061-T6 aluminium alloy. J Mech Sci Tech. 2017;31(8):3925-33.
Ghetiya ND, Patel KM. Welding speed effect on joint properties in air and immersed friction stir welding of AA2014. Proc IME B J Eng Manufact. 2017;231(5):897-909.
FSW-TECH. European friction stir welding operator friction stir welding handbook, FSW-TECH ERASMUS + PROJECT [Internet]. 2017 [cited 2020 Aug 22]. Available from: https://www.fsw-tech.eu/documents/IO3 %20-%20TRAINING%20MATERIAL/FSW-Tech%20 Handbook%20for%20Operators%20%E2%80%93%20 EN.pdf
Azomaterial. Aluminium/Aluminum 5052 Alloy (UNS A95052), Chemical composition of AA 5052 alloy [Internet]. [updated 2012 Sep 17; cited 2020 Aug 22]. Available from: https://www.azom.com/article.aspx? ArticleID=6626.
Ghetiya ND, Patel KM. Prediction of tensile strength and microstructure characterization of immersed friction stir welding of aluminium alloy AA2014-T4. Indian J Eng Mater Sci. 2015;22(2):133-40.
El-Sayed MM, Shash A, Mahmoud TS, Rabbou MA. Effect of friction stir welding parameters on the peak temperature and the mechanical properties of aluminum alloy 5083-O. In: Ochsner A, Altenbach H, editors. Improved Performance of Materials. Cham: Springer; 2017. p. 11-25.
Raweni A, Vidosav M, Aleksandar S, Srdjan T, Snezana K. Optimization of AA5083 friction stir welding parameters using Taguchi method. Tech Gazette. 2018;25(3):861-6.
Kowalczyk, M. Application of Taguchi and ANOVA methods in selection of process parameters for surface roughness in precision turning of titanium. Adv Manufact Sci Tech. 2014;38(2):21-35.
Ardak MB, Phate MR. Formulation of a model and analysis of mechanical timer parameters by using response surface method in MINITAB. Int J Res Appl Sci Eng Tech. 2014;2(6):269-76.
Salehi M, Saadatmand M, Mohandesi JA. Optimization of process parameters for producing AA6061/SiC nanocomposites by friction stir processing. Trans Nonferrous Met Soc China. 2012;22(5):1055-63.
Nourani M, Milani AS, Yannacopoulos S. Taguchi optimization of process parameters in friction stir welding of 6061 aluminum alloy: a review and case study. Eng. 2011;3(02):144-55.
Pachal, A. S, Bagesar A. Taguchi optimization of process parameters in friction welding of 6061 aluminum alloy and 304 steel: a review. Int Jo Emerging Tech Adv Eng. 2013;(4):229-33.
Pawar SP, Shete MT. Optimization of friction stir welding process parameter using Taguchi method and response surface methodology: A Review. Inter J Res Eng Tech. 2013;2(12):551-4.
Ackiel M, Manurung Y, Rahim MRA, Muhammad N, Ghazali F. Optimization of friction stir welding parameters with simultaneous multiple response consideration using multi-objective TAGUCHI method. Adv Mater Res. 2014;974:408-12.
Ramesha K, Sudersanan PD, Santhosh N, Ravichandran G, Manjunath N. Optimization of friction stir welding parameters using Taguchi method for aerospace applications. In: Vinyas M, Loja A, Reddy K, edtiors. Advances in structures, systems and materials. Lecture notes on multidisciplinary industrial engineering. Singapore: Springer; 2020. p. 293-306.
Ethiraj N, Meikeerthy S, Sivabalan T. Submerged friction stir welding: An overview of results of experiments and possible future works. Eng Appl Sci Res. 2020;47(1):111-6.
Das D, Mishra PC, Singh S, Thakur RK. Properties of ceramic-reinforced aluminium matrix composites - a review. Int J Mech Mater Eng. 2014;9(1):1-16.