The influence of temperature and thickness on the fracture behavior of P265GH material, using the J-integral method

Main Article Content

Houda Salmi
Abdelilah Hachim
Hanan El Bhilat
Khalid El Had

Abstract

In this work we exanimate, in elastoplastic case, the crack growth in P265GH material, we use eXtended finite element method (XFEM) in the Cast3m code. Crack growth in the 3D CT pipe sample is modeled using stress intensity factor and J integral. The comparison of the SIFs and the plastic zone size with analytical results validated the elasto-plastic numerical study; we analyzed the effect of loading and crack length on J integral. Finally, we analyzed the effect of both temperature and the specimen thickness on the fracture behavior of P265GH steel.

Article Details

How to Cite
Salmi, H., Hachim, A., El Bhilat, H., & El Had, K. (2021). The influence of temperature and thickness on the fracture behavior of P265GH material, using the J-integral method. Engineering and Applied Science Research, 48(3), 307–313. Retrieved from https://ph01.tci-thaijo.org/index.php/easr/article/view/240950
Section
ORIGINAL RESEARCH

References

Xin G, Wang H, Kang X, Jiang L. Analytic solutions to crack tip plastic zone under various loading conditions. Eur J Mech Solid. 2010;20:738-45.

Irwin GR. Plastic zone near a crack and fracture toughness. Proceedings of the 7th Saga More Ordnance Materials Conference. New York; 1960. p. 63-78.

Dugdale DS. Yielding of steel sheets containing slits. J Mech Phys Solid. 1969;9:100-6.

Rice JR, Rosengren GF. A path-independent integral and the approximate analysis of strain concentration by notches and cracks. J Appl Mech. 1980;35:379-86.

Le Fichoux E. Presentation et utilisation de castem 2000. 4th ed. ENSTA – LME: CEA; 1998.

Hutchinson JW. Singular behavior at the end of a tensile crack in a hardening material. J Mech Phys Solid. 1968;10:13-31.

Oommen B, Van Vliet KJ. Effects of nanoscale thickness and elastic nonlinearity on measured mechanical properties of polymeric films. Thin Solid Films. 2006;513:235-42.

Sukumar N, Chopp DL, Moran B. Extended finite element method and fast marching method for three-dimensional fatigue crack propagation. Eng Fract Mech. 2003;70:29-48.

Eshelby JD. The continuum theory of lattice defects. Solid State Phys. 1956;3:79-144.

Raheem Z. Standard test method for measurement of fracture toughness 1. Mater Sci. 2019:1-56.

Gérard P, Alain B, Yves S, Frédéric L. CODAP, Code Français de Construction des Appareils à Pression non

soumis à l’action de la flame. 2005th ed. PARIS LA DÉFENSE CEDEX: SNCT; 2005. [In France].

Salmi H, El HK, El BH, Hachim A. Numerical study of SIF for a crack in P265GH steel by XFEM. In: Dos Santos S, Maslouhi M, Okoudjou K, editors. Recent Advances in Mathematics and Technology. Cham: Spriger; 2020.

ASTM E1820-06. Standard test method for measurement of fracture toughness. Conshohocken: ASTM International; 2006.

Salmi H, Abdeliah H, Had KE, Bhilat HE. Numerical modeling and comparison study of elliptical cracks effect on pipes straight and with thickness transition exposed to internal pressure, using XFEM in elastic behavior. J Comput Appl Res Mech Eng. 2020;10(1):229-44.

Houda S, Khalid EH, Hanan EB, Abdelilah H. Numerical analysis of the effect of external circumferential elliptical cracks in transition thickness zone of pressurized pipes using XFEM. J Appl Comput Mech. 2019;5:861-74.

Bhilat HE, Had KE, Salmi, Hachim A. Thermo-mechanical characterization of post-consumer recycled high impact polystyrene from disposable cups: influence of the number of processing cycles. J Comput Appl Res Mech Eng. 2021;10(2):427-36.

Salmi H, Abdelilah H, Bhilat HE, Had KE. Crac influence on a pipe wiht double slope under internal pressure: numerical simulation with XFEM. IIUM Eng J. 2020;21(2):266-83.

Isabel D. Nocivite d’un defaut semi-elliptique dans une coque fermee soumis a une pression interne. France: University of Science and Technology of Lille; 1999.