Pareto optimality based multi-objective genetic algorithm: Application for livestock building system using an independent PID controller
Main Article Content
Abstract
The aim of this research is to stabilize the indoor relative humidity and temperature for the poultry house system. The control of these parameters appears as a big challenge due to the mutual interaction existing between the variables affecting the climate livestock building. To achieve this purpose, a developed independent PID controller based on Pareto optimality is proposed in conjunction with a multi-criterion genetic algorithm (MOGA). The broiler house model is decomposed into two independent single input single output (SISO) model using a static output feedback technique (SOF). Then, a multi-criterion genetic algorithm based on Pareto optimality is used to separately design the optimal parameters of the PID controller. The effectiveness of the developed controller is tested very successfully trough numerical simulations and comparison with the Ant Colony Optimization (ACO) and Ziegler Nichols (ZN) method.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Banhazi T, Aarnink A, Thuy H, Pedersen S, Hartung J, Maltz E, et al. Issues related to livestock housing under hot climatic conditions including the animals’ response to high temperatures. CIGR Workshop Animal Housing in Hot Climate; 2007 Apr 1-4; Cairo, Egypt. p. 4-24.
Daghir NJ. Poultry production in hot climates. 2nd ed. Wallingford: CABI; 2008.
Midwest Plan Service. Swine housing and equipment handbook. 4th ed. Iowa: Midwest Plan Service; 1983.
Daskalov PI. Prediction of temperature and humidity in a naturally ventilated pig building. J Agr Eng Res. 1997;68(4):329-39.
Daskalov PI, Arvanitis KG, Pasgianos GD, Sigrimis NA. Non-linear adaptive temperature and humidity control in animal buildings. Biosystems Eng. 2006;93(1):1-24.
Aborisade DO, Stephen O. Poultry house temperature control using Fuzzy-PID controller. Int J Eng Trends Tech. 2014;11(6):310-4.
Alimuddin, Seminar KB, Subrata IDM, Sumiati, Nomura N. A supervisory control system for temperature and humidity in a closed house model for broilers. Int J Electr Comput Sci. Int J Electr Comput Sci. 2011;11:75-82.
Lahlouh I, El Akkary A, Sefiani N. PID/Multi-loop control strategy for poultry house system using multi-objective ant colony optimization. Int Rev Automat Contr. 2018;11(5):273.
Lahlouh I, Elakkary A, Sefiani N. Design and implementation of state-PID feedback controller for poultry house system: application for winter climate. Adv Sci Technol Eng Syst J. 2020;5(1):135-41.
Chinchuluun A, Pardalos PM, Migdalas A, Pitsoulis L. Pareto optimality, game theory and equilibria. New York: Springer-Verlag; 2008.
Gadewadikar J, Lewis FL, Subbarao K, Peng K, Chen BM. H-infinity static output-feedback control for rotorcraft. J Intell Robot Syst. 2009;54(4):629-46.
Cao YY, Lam J, Sun YX. Static output feedback stabilization: an ILMI approach. Automatica. 1998;34(12):1641-5.
Lahlouh I, El Akkary A, Sefiani N. Mathematical modelling of the hygro-thermal regime of a poultry livestock building: simulation for spring climate. Int Rev Civ Eng. 2018;9(2):79-85.
Konak A, Coit DW, Smith AE. Multi-objective optimization using genetic algorithms: a tutorial. Reliab Eng Syst Saf. 2006;91(9):992-1007.
Jones DF, Mirrazavi SK, Tamiz M. Multi-objective meta-heuristics: an overview of the current state-of-the-art. Eur J Oper Res. 2002;137(1):1-9.
Fonesca CM, Fleming PJ. Genetic algorithms for multiobjective optimization: formulation, discussion and generalization. In: Forrest S, editor. Genetic Algorithms: Proceedings of the Fifth International Conference; 1993 Jul; San Mateo, USA. California: Morgan Kaufmann Publishers; 1993. p. 415-23.
Hajela P, Lin CY. Genetic search strategies in multicriterion optimal design. Struct Optim. 1992;4(2):99-107.
rey Horn J, Nafpliotis N, Goldberg DE. A niched Pareto genetic algorithm for multiobjective optimization. Proceedings of the first IEEE conference on evolutionary computation, IEEE world congress on computational intelligence; 1994 Jun 27-29; Orlando, USA. USA: IEEE; 1994. p. 82-7.
Srinivas N, Deb K. Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evol Comput. 1994;2(3):221-48.
Coello CACC, Pulido GT. A micro-genetic algorithm for multiobjective optimization. In: Zitzler E, Thiele L, Deb K, Coello CACC, Corne D, editors. International Conference on Evolutionary Multi-Criterion Optimization; 2001 Mar 7-9; Zurich, Switzerland. Berlin: Springer; 2001. p. 126-40.
Lu H, Yen GG. Rank-density-based multiobjective genetic algorithm and benchmark test function study. IEEE Trans Evol Comput. 2003;7(4):325-43.
Goldberg DE. Genetic algorithm in search, optimization, and machine learning. Massachusetts: Addison-Wesley Longman; 1989.
Häckel S, Fischer M, Zechel D, Teich T. A multi-objective ant colony approach for pareto-optimization using dynamic programming. Proceedings of the 10th annual conference on Genetic and evolutionary computation; 2008 Jul 12-16; Atlanta, USA. New York: ACM; 2008. p. 33-40.
Tusar T, Filipic B. Visualization of Pareto front approximations in evolutionary multiobjective optimization: a critical review and the prosection method. IEEE Trans Evol Comput. 2015;19(2):225-45.
Aguila-Camacho N, Duarte-Mermoud MA. Fractional adaptive control for an automatic voltage regulator. ISA Trans. 2013;52(6):807-15.
Åström KJ, Hägglund T. PID controllers: theory, design, and tuning. 2nd ed. North Carolina: Instrument Society of America; 1995.
Yu CC. Autotuning of PID controllers: a relay feedback approach. 2nd ed. London: Springer; 2006.
Dudziak WJ. Presentation and analysis of a multi-dimensional interpolation function for non-uniform data: Microsphere projection [dissertation]. Ohio: University of Akron; 2007.
Bruant M, Guarracino G, Michel P. Design and tuning of a fuzzy controller for indoor air quality and thermal comfort management. Int J Sol Energ. 2001;21:2-3:81-109.
Mirjalili S, Mirjalili SM, Lewis A. Grey wolf optimizer. Adv Eng Software. 2017;69:46-61.
Mirjalili S. The ant lion optimizer. Adv Eng Software. 2015;83:80-98.