Automated identification of 3D lung CT image orientation

Main Article Content

Hanung Adi Nugroho
Rizki Nurfauzi
Eka Legya Frannita

Abstract

Computerized tomography (CT) is one of the major high-resolution imaging modalities. It is especially useful in the early detection of lung abnormalities.  However, CT images are sometimes stored with names that do not always indicate the order of 3D images. Using “SliceLocation” and “InstanceNumber” in the CT header, CT image slices can be arranged into 3D form. However, the orientation of 3D images may still be reversed. The objective of the proposed method is to automatically determine the orientation of ordered 3D lung CT images by identifying the position of the trachea. The two features consisting of area difference and mean of roundness along several slices are extracted. The full dataset of LIDC-IDRI containing 10,010 3D lung CT images was evaluated to measure the performance of the proposed method.  This proposed method achieves 99.97% accuracy. The proposed procedure can be very useful for development of computer aided detection or diagnosis of 3D lung CT images.

Article Details

How to Cite
Nugroho, H. A., Nurfauzi, R., & Frannita, E. L. (2020). Automated identification of 3D lung CT image orientation. Engineering and Applied Science Research, 47(2), 198–205. Retrieved from https://ph01.tci-thaijo.org/index.php/easr/article/view/223541
Section
ORIGINAL RESEARCH

References

Bhavanishankar K, Sudhamani MV. Techniques for detection of solitary pulmonary nodules in human lung and their classifications - a survey. Int J Cybern Inf. 2015;4(1):27-40.

Conway J. Lung imaging — two dimensional gamma scintigraphy, SPECT, CT and PET. Adv Drug Deliv Rev. 2012;64(4):357-68.

Diederich S, Lentschig MG, Overbeck TR, Wormanns D, Heindel W. Detection of pulmonary nodules at spiral ct: comparison of maximum intensity projection sliding slabs and single-image reporting. Eur Radiol. 2001;11(8):1345-50.

Santos AM, de Carvalho Filho AO, Silva AC, de Paiva AC, Nunes RA, Gattass M. Automatic detection of small lung nodules in 3D CT data using gaussian mixture models, tsallis entropy and SVM. Eng Appl Artif Intell. 2014;36:27-39.

Dajac J, Kamdar J, Moats A, Nguyen B. To screen or not to screen: low dose computed tomography in comparison to chest radiography or usual care in reducing morbidity and mortality from lung cancer. Cureus. 2016;8(4):e589.

Kundel H, Revesz G. Lesion conspicuity, structured noise, and film reader error. Am J Roentgenol. 1976;126(6):1233-8.

Berbaum KS, Franken EA Jr, Dorfman DD, Rooholamini SA, Kathol MH, Barloon TJ, et al. Satisfaction of search in diagnostic radiology. Invest Radiol. 1990;25(2):133-40.

Renfrew DL, Franken EA, Berbaum KS, Weigelt FH, Abu-Yousef MM. Error in radiology: classification and lessons in 182 cases presented at a problem case conference. Radiology. 1992;183(1):145-50.

Petrick N, Sahiner B, Armato SG 3rd, Bert A, Correale L, Delsanto S, et al. Evaluation of computer-aided detection and diagnosis systems. Med Phys. 2013;40(8):087001.

McNitt-Gray MF, Armato SG 3rd, Meyer CR, Reeves AP, McLennan G, Pais RC, et al. The lung image database consortium (LIDC) data collection process for nodule detection and annotation. Acad Radiol. 2007;14(12):1464-74.

Valente IRS, Cortez PC, Neto EC, Soares JM, de Albuquerque VHC, Tavares JMRS. Automatic 3D pulmonary nodule detection in CT images: a survey. Comput Methods Programs Biomed. 2016;124:91-107.

Lederlin M, Revel MP, Khalil A, Ferretti G, Milleron B, Laurent F. Management strategy of pulmonary nodule in 2013. Diagn Interv Imaging. 2013;94(11):1081-94.

Zhang J, Xia Y, Cui H, Zhang Y. Pulmonary nodule detection in medical images: a survey. Biomed Signal Process Contr. 2018;43:138-47.

Buket B, Ko P, Özçam A, Kanik SD. Lung nodule detection in x-ray images: a new feature set. In: Lacković I, Vasic D, editors. 6th European Conference of the International Federation for Medical and Biological Engineering; 2014 Sep 7-11; Dubrovnik, Croatia. Switzerland: Springe; 2015. p. 150-5.

Shen S, Bui AAT, Cong J, Hsu W. An automated lung segmentation approach using bidirectional chain codes to improve nodule detection accuracy. Comput Biol Med. 2015;57:139-49.

Nurfauzi R, Nugroho HA, Ardiyanto I. Lung detection using adaptive border correction. 2017 3rd International Conference on Science and Technology - Computer (ICST); 2017 Jul 11-12; Yogyakarta, Indonesia. USA: IEEE; 2017. p. 57-60.

Nithila EE, Kumar SS. Automatic detection of solitary pulmonary nodules using swarm intelligence optimized neural networks on CT images. Eng Sci Technol Int J. 2017;20(3):1192-202.

De Nunzio G, Tommasi E, Agrusti A, Cataldo R, De Mitri I, Favetta M, et al. Automatic lung segmentation in CT images with accurate handling of the hilar region. J Digit Imaging. 2011;24(1):11-27.

Jimenez-Carretero D, Bermejo-Peláez D, Nardelli P, Fraga P, Fraile E, Estépar RSJ, et al. A graph-cut approach for pulmonary artery-vein segmentation in noncontrast CT images. Med Image Anal. 2019;52:144-59.

Filho PPR, da Silva Barros AC, Almeida JS, Rodrigues JPC, de Albuquerque VHC. A new effective and powerful medical image segmentation algorithm based on optimum path snakes. Appl Soft Comput. 2019;76:649-70.

Lampert TA, Stumpf A, Gacarski P. An empirical study into annotator agreement, ground truth estimation, and algorithm evaluation. IEEE Trans Image Process. 2016;25(6):2557-72.

Nurfauzi R, Nugroho HA, Ardiyanto I, Frannita EL. Autocorrection of lung boundary on 3D CT lung cancer images. J King Saud Univ. - Comput Inf Sci. In press 2019.

Zhou S, Cheng Y, Tamura S. Automated lung segmentation and smoothing techniques for inclusion of juxtapleural nodules and pulmonary vessels on chest CT images. Biomed Signal Process Contr. 2014;13:62-70.

Cid YD, Del Toro OAJ, Depeursinge A, Müller H. Efficient and fully automatic segmentation of the lungs in CT volumes. CEUR Workshop Proceedings. 2015;1390:31-5.

Mansoor A, Bagci U, Xu Z, Foster B, Olivier KN, Elinoff JM, et al. A generic approach to pathological lung segmentation. IEEE Trans Med Imaging. 2014;33(12):2293-310.

Armato SG, McLennan G, Bidaut L, McNitt-Gray MF, Meyer CR, Reeves AP, et al. The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans. Med Phys. 2011;38(2):915-31.

Moosavi Tayebi R, Wirza R, Sulaiman PS, Dimon MZ, Khalid F, Al-Surmi A, et al. 3D multimodal cardiac data reconstruction using angiography and computerized tomographic angiography registration. J Cardiothorac Surg. 2015;10:58.

Otsu N. A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern. 1979;9(1):62-6.

Gonzalez RC, Woods RE. Digital image processing. 3rd Ed. New Jersey, USA: Prentice-Hall; 2006.

Gonzales RC, Wood RE. Digital image processing. 2nd Ed. New Jersey, USA: Prentice Hall; 2002.