Design aspects of 5G: Frequency allocation, services and MIMO antennas

Main Article Content

Arumita Biswas
Vibha Rani Gupta

Abstract

The 5th Generation of mobile communication is the next big technological leap that will fulfill the needs of the information society in the coming decade. Researchers, academicians and stakeholders have come together to identify the scope and formulate the policies to be implemented for easy roll-out of 5G services around the globe. This paper reviews the work of numerous researchers and telecom standard developing organizations, with an aim of better understanding of the important design aspects of 5G‑like allocation of the frequency spectrum, identified 5G services, methods of distribution of network resource with aim to attain defined Key Performance Indicators, User Equipment MIMO antenna design challenges and Base Station massive MIMO antenna requirements.

Article Details

How to Cite
Biswas, A., & Gupta, V. R. (2020). Design aspects of 5G: Frequency allocation, services and MIMO antennas. Engineering and Applied Science Research, 47(1), 103–110. retrieved from https://ph01.tci-thaijo.org/index.php/easr/article/view/203229
Section
REVIEW ARTICLES

References

Zhang H, Dong Y, Cheng J, Hossain MJ, Leung VCM. Fronthauling for 5G LTE-U ultra dense cloud small cell networks.IEEE Wireless Commun. 2016;23(6):48-53.

MediaTek.5G NR: A new era for enhanced mobile broadband, White Paper Meidatek [Internet].2018 [cited 2019 Jun]. Available from: https://cdn-www.mediatek.com/page/MediaTek-5G-NR-White-Paper-PDF5GNRWP.pdf.

3gpp.3GPP Release 15 [Internet]. 2019[cited 2019 May]. Available from https://www.3gpp.org/release-15.

3gpp. 3GPP Release 16 [Internet]. 2019 [cited 2019 Jun]. Available from https://www.3gpp.org/release-16.

ITU-RM. [IMT-2020.TECH PERF REQ] - Minimum Requirements Related to Technical Performance for IMT2020 Radio Interface(s), Report ITU-R M.2410-0, Nov. 2017 [Internet]. 2017[cited 2019 Jun]. Available from: https://www.itu.int/dms_pub/itu-r/opb/rep/R-REP-M.2410-2017-PDF-E.pdf.

3rd Generation Partnership Project. Study on new radio (NR) access technology physical layer aspects, TR 38.802, March 2017.

3rd Generation Partnership Project. 5G, NR, User Equipment (UE) radio transmission and reception, Part1, Range 1 Standalone. TS 38.101-1 version 15.2.0 Release 15, July 2018.

3rd Generation Partnership Project. 5G, NR, Base Station (BS) radio transmission and reception. TS 38.104 version 15.3.0 Release 15, October 2018.

ITU. World Radiocommunication Conferences [Internet]. [cited 2019 Jun]. Available from: https://www.itu.int/en/ITU-R/conferences/wrc/Pages/ default.aspx.

Huawei.5G spectrum public policy position-Huawei [Internet].[cited 2019 May]. Available from: https://www-file.huawei.com/-/media/CORPORATE /PDF/public-policy/public_policy_position_5g_spec trum.pdf.

3GPP. 3GPP SA1 completes its study into 5G requirements [Internet]. [cited 2019 Jun]. Available from: https://www.3gpp.org/news-events/1786-5g_reqs_sa1.

Popovski P, Trillingsgaard KF, Simeone O, Durisi G. 5G Wireless Network Slicing for eMBB, URLLC, and mMTC:a communication-theoretic view. IEEE Access. 2018;6: 55765-79.

3rd Generation Partnership Project. 5G, Study on scenarios and requirements for next generation access technologies. TR 38.913 version 14.2.0 Release 14, May 2017.

Zhang H, Liu N, Chu X, Long K, Aghvami AH, Leung VCM. Network slicing based 5G and future mobile networks: mobility, resource management, and challenges. IEEE Commun Mag. 2017;55(8):138-45.

Rost P, Banchs A, Berberana I, Breitbach M, Doll M, Droste H, et al. Mobile network architecture evolution toward 5G.IEEE Commun Mag. 2016;54(5):84-91.

ETSI. Next Generation Protocols (NGP), E2E network slicing reference framework and information model. ETSI GR NGP 011 V1.1.1, September 2018.

Guan W, Wen X, Wang L, Lu Z, Shen Y. A service-oriented deployment policy of end-to-end network slicing based on complex network theory. IEEE Access. 2018;6:19691-701.

Costanzo S, Fajjari I, Aitsaadi N, Langar R. DEMO: SDN-based network slicing in C-RAN. 15th IEEE Annual Consumer Communication and Networking Conference; 2018 Jan 12-15; Las Vegas, USA. USA: IEEE; 2018. p. 1-2.

Addad RA, Bagaa M, Taleb T, Dutra DLC ,Flinck H. Optimization model for cross-domain network slices in 5G networks. IEEE T Mobile Comput. 2019;1(1):1-14.

Li T, Zhao L, Song F, Pan C. OAI-based end to end network slicing. IEEE 23rd International Conference on Digital Signal Processing (DSP); 2018 Nov 19-21; Shanghai, China. USA: IEEE; 2018. p. 1-4.

Biswas A, Gupta VR. Design of penta-band MIMO antenna for GPS/2G/3G/4G and 5G NR applications. Int J Recent Tech Eng. 2019;8:1935-40.

Zhang S, Ying Z. MIMO antennas for mobile terminals. Forum for Electromagnetic Research Methods and Application Technologies. 2016:725-727.

Biswas A, Gupta VR. Multi-band antenna design for smartphone covering 2G, 3G, 4G and 5G NR frequencies. 3rd International Conference on Trends in Electronics and Informatics; 2019 Apr 23-25; Tirunelveli, India. USA: IEEE; 2019. p. 84-7.

FCC. Specific Absorption Rate (SAR) for Cellular Telephone [Internet]. [cited 2019 Jun]. Available from: https://www.fcc.gov/general/specific-absorption-rate-sar-cellular-telephones.

Chen WS, Chang YL. Small size 5G C-band/WLAN 5.2/5.8GHz MIMO antenna for laptop computer applications. IEEE International Workshop on Electromagnetics: Applications and Student Innovation Competition (iWEM); 2018 Aug 29-31;Nagoya, Japan. USA: IEEE; 2018. p. 1-2.

Marzudi WNNW, Abidin ZZ, Muji SZ, Yue M, Alhameed RAA. Minimization of mutual coupling using neutralization line technique for 2.4 GHz wireless applications. Int J Digit Inform Wireless Comm 2014; 4(3):26-32.

Zhang S, Pedersen GF. Mutual coupling reduction for UWB MIMO antennas with a wideband neutralization line. IEEE Antenn Wireless Propag Lett. 2016;15:166-9.

Deng JY, Li J, Zhao L, Guo L. A dual-band inverted-F MIMO antenna with enhanced isolation for WLAN applications. IEEE Antenn Wireless Propag Lett. 2017;16:2270-3.

Dong J, Yu X, Deng L. A decoupled multiband dual-antenna system for WWAN/LTE smartphone applications. IEEE Antenn Wireless Propag Lett. 2017;16:1528-32.

Sharawi MS, Ikram M, Shamim A. A two concentric slot loop based connected array MIMO antenna system for 4G/5G terminals. IEEE Trans Antenn Propag. 2017; 65(12):6679-86.

Bilal M, Saleem R, Abbasi HH, Shafique MF, Brown AK. An FSS-based nonplanar quad-element UWB-MIMO antenna system. IEEE Antenn Wireless Propag Lett. 2017;16:987-90.

Abdalla MA, Ibrahim AA. Design and performance evaluation of metamaterial inspired MIMO antennas for wireless applications. Wireless Pers Comm. 2017;95(2):1001-17.

Boukarkar A, Lin XQ, Jiang Y, Nie LY, Mei P, Yu YQ. A miniaturized extremely close-spaced four-element dual-band MIMO antenna system with polarization and pattern diversity. IEEE Antenn Wireless Propag Lett, 2018;17(1):134-7.

Ding CF, Zhang XY, Xue CD, Sim CYD. Novel pattern-diversity-based decoupling method and its application to multi element MIMO antenna. IEEE Trans Antenn Propag. 2018;66(10):4976-85.

Sharawi MS. Printed MIMO antenna systems: performance metrics, implementations and challenges. Forum for Electromagnetic Research Methods and Application Technologies. 2014;1:1-11.

Baharom B, Ali MT, Awang RA, Jaafar H, Yon H. Dual-element of high-SHF PIFA MIMO antenna for future 5G wireless communication devices. International Symposium on Antennas and Propagation (ISAP); 2018 Oct 23-26; Busan, Korea. USA: IEEE; 2018. p. 1-2.

Saxena S, Kanaujia BK, Dwari S, Kumar S, Tiwari R. MIMO antenna with built-in circular shaped isolator for sub-6 GHz 5G applications. Electron Lett. 2018;54(8):478-80.

Abdullah M, Ban YL, Kang K, Li MY, Amin M. Compact four-port MIMO antenna system at 3.5GHz.IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC); 2017 Mar 25-26; Chongqing, China. USA: IEEE; 2017. p. 656-60.

Dioum I, Diallo K, Diop I, Sane L, Ngom A. Miniature MIMO antennas for 5G mobile terminals.6th International Conference on Multimedia Computing and Systems (ICMCS); 2018 May 10-12;

Rabat, Morocco. USA: IEEE; 2018. p. 1-6.

Abdullah M, Ban YL, Kang K, Sarkodie OKKf, Li MY. Compact 4-port MIMO antenna system for 5G mobile terminal. International Applied Computational Electromagnetics Society Symposium;2017 Mar 26-30; Florence, Italy. USA: IEEE; 2017.p.1-2.

Parchin NO, Al-Yasir YIA, Ali AH, Elfergani I, Noras JM, Rodriguez J, et al. Eight-element dual polarized MIMO slot antenna system for 5G Smartphone applications. IEEE Access. 2019;7:15612-22.

Zhao A, Ren Z. Size reduction of self-isolated MIMO antenna system for 5G mobile phone application. IEEE Antenn Wireless Propag Lett.2019;18(1):152-6.

Li Y, Sim CYD, Luo Y, Yang G. High-isolation 3.5GHz eight-antenna MIMO array using balanced open-slot antenna element for 5G Smartphones. IEEE Trans Antenn Propag. 2019;67(6):3820-30.

Jiang W, Liu B, Cui Y, Hu W. High-isolation eight-element MIMO array for 5G Smartphone applications, IEEE Access. 2019;7:34104-12.

Li Y, Sim CYD, Luo Y, Yang G. Multiband 10-antenna array for sub-6GHz MIMO applications in 5G Smartphones. IEEE Access. 2018;6:28041-53.

Deng JY, Yao J, Sun DQ, Guo LX. Ten-element MIMO antenna for 5G terminals. Microw Opt Tech Lett. 2018;60(12):3045-9.

Li Y, Sim CYD, Luo Y, Yang G. 12-Port 5G massive MIMO antenna array in sub-6GHz mobile handset for LTE bands 42/43/46 applications. IEEE Access. 2018;6:344-54.

Gampala G, Reddy CJ. Massive MIMO-beyond 4G and a basis for 5G. International Applied Computational Electromagnetics Society Symposium (ACES); 2018 Mar 25-29; Denver, USA.USA: IEEE; 2018. p. 1-2.

Honcharenko W. Sub-6GHz mMIMO Base Stations meet 5G’s size and weight challenges. Microw J. 2019; 62(2):1-5.

Shaikh A, Kaur MJ. Comprehensive survey of massive MIMO for 5G communications. Advances in Science and Engineering Technology International Conferences (ASET); 2019 Mar 26 – Apr 10; Dubai, United Arab Emirates. USA: IEEE; 2019. p. 1-5.