Succinic acid production from lignin by photo-oxidation

Main Article Content

Manmard Suttipornphaisalkul
Phillip Wright
Khanita Kamwilaisak

Abstract

Lignin is one of three components that make up wood, and it is the most recalcitrant among these compounds due to its highly degradation-resistant phenolic polymer structure. Lignin is composed of carbon, oxygen and hydrogen, which has the potential to be a feedstock for biofuels and biorefining processes. In this work, lignin was depolymerized to produce succinic and acetic acids via a photocatalytic reaction. TiO2 and H2O2 under UV-light were used as a photocatalyst and photocatalyst promoter, respectively. The effect of TiO2 and H2O2 dosage, solution pH and reaction time on %yield of dicarboxylic acid was determined.  Optimization of reaction conditions was done with response surface methodology using a Box-Behnken design. It was found that the maximum %yield of succinic acid (7.8%) was at a reaction time of 24 h, a 2.37 g/l of TiO2 dosage and 25.45 µl of H2O2 dosage and pH 7.0. The predicted dicarboxylic acid yield using was accurate with R2=91.8%. This would be an alternative way to produce high-value fine chemicals from lignin.

Article Details

How to Cite
Suttipornphaisalkul, M., Wright, P. ., & Kamwilaisak, K. (2020). Succinic acid production from lignin by photo-oxidation. Engineering and Applied Science Research, 47(1), 36–46. retrieved from https://ph01.tci-thaijo.org/index.php/easr/article/view/190763
Section
ORIGINAL RESEARCH

References

Schutyser W, Renders T, Van den Bosch S, Koelewijn SF, Beckham GT, Sels BF. Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chem Soc Rev. 2018;47(3):852-908.

Zeng J, Yoo CG, Wang F, Pan X, Vermerris W, Tong Z. Biomimetic fenton‐catalyzed lignin depolymerization to high‐value aromatics anddicarboxylic acids. Chem Sus Chem. 2015;8(5):861-71.

Chen C, Jin D, Ouyang X, Zhao L, Qiu X, Wang F. Effect of structural characteristics on the depolymerization of lignin into phenolic monomers. Fuel. 2018;223:366-72.

Deuss PJ, Barta K. From models to lignin: Transition metal catalysis for selective bond cleavage reactions. Coord Chem Rev. 2016;306:510-32.

Fernández-Rodríguez J, Erdocia X, Sánchez C, González Alriols M, Labidi J. Lignin depolymerization for phenolic monomers production by sustainable processes. J Energ Chem. 2017;26(4):622-31.

Bi Z, Li Z, Yan L. Catalytic oxidation of lignin to dicarboxylic acid over the CuFeS2 nanoparticle catalyst. Green Process Synth. 2018;7(4):306-15.

Ma R, Guo M, Zhang X. Recent advances in oxidative valorization of lignin. Catal Today. 2018;302:50-60.

Wang M, Ma J, Liu H, Luo N, Zhao Z, Wang F. Sustainable productions of organic acids and their derivatives from biomass via selective oxidative cleavage of C–C bond. ACS Catalysis. 2018;8(3):2129-65.

Kang J, Irmak S, Wilkins M. Conversion of lignin into renewable carboxylic acid compounds by advanced oxidation processes. Renew Energ. 2019;135:951-62.

Wang M, Zhang X, Li H, Lu J, Liu M, Wang F. Carbon modification of nickel catalyst for depolymerization of oxidized lignin to aromatics. ACS Catalysis. 2018;8(2):1614-20.

Ma R., Guo M, Zhang X. Selective conversion of biorefinery lignin into dicarboxylic acids. Chem Sus Chem. 2014;7(2):412-5.

Kamwilaisak K, Wright PC. Investigating laccase and titanium dioxide for lignin degradation. Energ Fuel. 2012;26(4):2400-6.

Sun Z, Fridrich B, Santi A, Elangovan S, Barta K. Bright side of lignin depolymerization: toward new platform chemicals. Chem Rev. 2018;118(2):614-78.

Wang JL, Xu LJ. Advanced oxidation processes for wastewater treatment: formation of hydroxyl radical and application. Crit Rev Environ Sci Tech. 2012;42(3):251-325.

Cronin DJ, Zhang X, Bartley J, Doherty WOS. Lignin depolymerization to dicarboxylic acids with sodium percarbonate. ACS Sustain Chem Eng. 2017;5(7):6253-60.

Yin G, Jin F, Yao G, Jing Z. Hydrothermal conversion of catechol into four-carbon dicarboxylic acids. Ind Eng Chem Res. 2015;54(1):68-75.

Seesuriyachan P, Kuntiya A, Kawee-ai A, Techapun C, Chaiyaso T, Leksawasdi N. Improvement in efficiency of lignin degradation by Fenton reaction using synergistic catalytic action. Ecol Eng. 2015;85:283-7.

Zhang D, Sun B, Duan L, Tao Y, Xu A, Li X. Photooxidation of guaiacol to organic acids with hydrogen peroxide by microwave discharge electrodeless lamps. Chem Eng Tech. 2016;39(1):97-101.

Prado R, Erdocia X, Labidi J. Effect of the photocatalytic activity of TiO2 on lignin depolymerization. Chemosphere. 2013;91(9):1355-61.

Tanaka K, Calanag R, Hisanaga T. Photocatalyzed degradation of lignin on TiO2. J Mol Catal Chem. 1999;138(2-3):287-94.

Zhang H, Wang Z, Li R, Guo J, Li Y, Zhu J, et al. TiO2 supported on reed straw biochar as an adsorptive and photocatalytic composite for the efficient degradation of sulfamethoxazole in aqueous matrices. Chemosphere. 2017;185:351-60.

Awungacha Lekelefac C, Busse N, Herrenbauer M, Czermak P. Photocatalytic based degradation processes of lignin derivatives. Int J Photoenergy. 2015;2015:1-18.

Castellote M, Bengtsson N. Principles of TiO 2 photocatalysis, in applications of titanium dioxide photocatalysis to construction materials. In: Ohama Y, Van Gemert D, editors. Application of Titanium Dioxide Photocatalysis to Construction Materials. Berlin: Springer; 2011. p. 5-10.

Liu C, Wu S, Zhang H, Xiao R. Catalytic oxidation of lignin to valuable biomass-based platform chemicals: a review. Fuel Process Tech. 2019;191:181-201.

Ray S, Lalman JA. Using the box–benkhen design (BBD) to minimize the diameter of electrospun titanium dioxide nanofibers. Chem Eng J. 2011;169(1):116-25.

Nam SN, Cho H, Han J, Her N, Yoon J. Photocatalytic degradation of acesulfame K: optimization using the box–behnken design (BBD). Process Saf Environ Protect. 2018;113:10-21.

Tak BY, Tak BS, Kim YJ, Park YJ, Yoon YH, Min GH. Optimization of color and COD removal from livestock wastewater by electrocoagulation process: application of box–behnken design (BBD). J Ind Eng Chem. 2015;28:307-15.

Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, Anpo M, et al. Understanding TiO2 photocatalysis: mechanisms and materials. Chem Rev. 2014;114(19):9919-86.

Diantoro M, A Kusumaatmaja, Triyana K. Study on Photocatalytic properties of TiO2 nanoparticle in various pH condition. IOP Conf Series: Journal of Physics: Conf Series. 2018;1011:1-7.

Tripathi A, Narayanan S. Impact of TiO2 and TiO2/g-C3N4 nanocomposite to treat industrial wastewater. Environ Nanotechnol Monit Manag. 2018;10:280-91.

Zhu XD, Wang YJ, Sun RJ, Zhou DM. Photocatalytic degradation of tetracycline in aqueous solution by nanosized TiO2. Chemosphere. 2013;92(8):925-32.

Safari GH, Hoseini M, Seyedsalehi M, Kamani H, Jaafari J, Mahvi AH. Photocatalytic degradation of tetracycline using nanosized titanium dioxide in aqueous solution. Int J Environ Sci Tech. 2015;12(2):603-16.

Bazrafshan E, Al-Musawi TJ, Silva MF, Panahi AH, Havangi M, Mostafapur FK. Photocatalytic degradation of catechol using ZnO nanoparticles as catalyst: optimizing the experimental parameters using the box-behnken statistical methodology and kinetic studies. Microchem J. 2019;147:643-53.

Zazouli MA, Balarak D, Mahdavi Y. Pyrocatechol removal from aqueous solutions by using azolla filiculoides. Health Scope. 2013;2(1):25-30.

Dewidar H, Nosier S, El-Shazly A. Photocatalytic degradation of phenol solution using zinc oxide/uv. J Chem Health Saf. 2018;25(1):2-11.

Hasegawa I, Inoue Y, Muranaka Y, Yasukawa T, Mae K. Selective production of organic acids and depolymerization of lignin by hydrothermal oxidation with diluted hydrogen peroxide. Energ Fuel. 2011; 25(2):791-6.

Li SH, Liu S, Colmenares JC, Xu YJ. A sustainable approach for lignin valorization by heterogeneous photocatalysis. Green Chem. 2016;18(3):594-607.

Kansal S, Singh M, Sud D. Studies on TiO2/ZnO photocatalysed degradation of lignin. J Hazard Mater. 2008;153(1-2):412-7.

Li X, Zou M, Wang Y. Soft-Template synthesis of mesoporous anatase TiO2 nanospheres and its enhanced photoactivity. Molecules. 2017;22(11): 1943.

Saxena R, Saran S, Isar J, Kaushik R. Production and applications of succinic acid. In: Pandey A, Negi S, Soccol CR, editors. Current Developments in Biotechnology and Bioengineering. USA: Elsevier; 2017. p. 601-30.

Li Q, Wang D, Wu Y, Li W, Zhang Y, Xing J, et al. One step recovery of succinic acid from fermentation broths by crystallization. Separ Purif Tech. 2010;72(3):294-300.

Nghiem NP, Kleff S, Schwegmann S. Succinic acid: technology development and commercialization. Ferment. 2017;3(2):1-14.

Sadoun O, Rezgui F, G'Sell C. Optimization of valsartan encapsulation in biodegradables polyesters using Box-Behnken design. Mater Sci Eng C. 2018;90:189-97.

Shilpy M, Ehsan MA, Ali TH, Abd Hamid SB, Ali ME. Performance of cobalt titanate towards H 2 O 2 based catalytic oxidation of lignin model compound. RSC Adv. 2015;5(97):79644-53.