Behaviour of ultrasonic properties on SnAs, InTe and PbSb

Main Article Content

Devraj Singh
Chinmayee Tripathy
Rita Paikaray
Ashish Mathur
Shikha Wadhwa

Abstract

In present investigation, we studied the elastic, ultrasonic and thermal properties of SnAs, InTe and PbSb. The Coulomb and Born-Mayer potential model was utilized to compute the second and third order elastic constants up to second nearest neighbor. The direction dependent ultrasonic velocities for longitudinal and shear waves, Debye average velocity and mechanical constants such as bulk modulus, shear modulus, tetragonal modulus, Young’s modulus, Poisson ratio, Pugh’s indicator (shear modulus to bulk modulus ratio) and Zener anisotropy ratio were obtained with the use of the second order elastic constants and the density of the chosen materials. Since the Pugh’s indicator is greater than 0.59 for all chosen materials, they have a brittle nature. Further the second and third order elastic constants with other associated acoustical parameters were used to compute the Debye temperature, thermal relaxation time, acoustic coupling constant and ultrasonic attenuation. The total ultrasonic attenuation is the smallest in the case of InTe along the <100> direction and highest for SnAs along the <111> direction. Thermo-elastic loss is insignificant in comparison to the loss due to the phonon-phonon interaction mechanism. Additionally, the thermal conductivity of these materials was found using Cahill’s approach. The results of this investigation are discussed with the available findings and for other rock salt structured materials.

Article Details

How to Cite
Singh, D., Tripathy, C., Paikaray, R., Mathur, A., & Wadhwa, S. (2019). Behaviour of ultrasonic properties on SnAs, InTe and PbSb. Engineering and Applied Science Research, 46(2), 98–105. retrieved from https://ph01.tci-thaijo.org/index.php/easr/article/view/149473
Section
ORIGINAL RESEARCH

References

Banus MD, Hanneman RE, Strongin M, Gooen K. High-pressure transitions in A(III)B(VI) compounds: indium telluride. Science. 1963;142:662-3.

Geller S, Hull GW. Superconductivity of intermetallic compounds with NaCl-type and related structures. Phys Rev Lett. 1964;13:127-9.

Chattopadhyay T, Santandrea RP, Von Schnering HG. Temperature and pressure dependence of the crystal structure of InTe: a new high pressure phase of InTe. J Phys Chem Solids. 1985;46:351-6.

Wang Y, Sato H, Toda Y, Ueda S, Hiramatsu H, Hoson H. SnAs with the NaCl-type Structure: type I superconductivity and single valence state of Sn. Chem Mater. 2014;26:7209-13.

Tütüncü HM, Srivastava GP. Electron–phonon interaction and superconductivity in SnAs with the sodium chloride crystal structure. Solid State Commun. 2015;221:24-7.

Kunjomana AG, Chandrasekharan KA, Teena M. Physical properties of vapour grown indium monotelluride platelets. J Cryst Growth. 2015;411:81-7.

Hase I, Yasutomi K, Yanagisawa T, Odagiri K, Nishio T. The absence of CDW order in PbSb, and its unexpected softness. Physics Procedia. 2015;65:37-40.

Hase I, Yasutomi K, Yanagisawa T, Odagiri K, Nishio T. Electronic structure of InTe, SnAs and PbSb: valence-skip compound or not ?. Physica C. 2016;527:85-90.

Varma CM. Missing valence states, diamagnetic insulators, and superconductors. Phys Rev Lett. 1988;61:2713-20.

Shrivastava D, Dhabi S, Jha PK, Sanyal SP. Structural phase transition, electrtonic and elastic properties of rocksalt structure SnAs and SnSb. Solid State Commun. 2016;243:16-22.

Rahman MA, Chowdhury UK, Bhuyan TH, Rahman MA. Theoretical investigation of structural, elastic, electronic and optical properties of SnAs. Am J Condens Matt Phys. 2016;6:27-35.

Reddy PVS, Kanchana V, Millichamp TE, Vaitheeswaran G, Dugdale SB. Enhanced superconductivity in the high pressure phase of SnAs studied from first principles. Physica B. 2017;505:33-40.

Brugger K. Thermodynamic definition of higher order elastic coefficients. Phys Rev. 1964;133:A1611-2.

Mori S, Hiki Y. Calculation of the third- and fourth order elastic constants of alkali halide crystals. J Phys Soc Jpn. 1978;45:1449-56.

Liebfried G, Haln H. Zur temperaturabhangigkeit der elastischen konstantaaen von alkalihalogenididkristallen. Z Phys. 1958;150:497-525.

Leibfried G, Ludwig W. Theory of anharmonic effect in crystal. In: Seitz F, Turnbull D, editors. Solid State Physics, Vol. 12. New York: Academic Press; 1961. p. 275-444.

Ghate PB. Third order elastic constants of alkali halide crystals. Phys Rev. 1965;139:A1666-74.

Bhalla V, Singh D, Jain SK. Mechanical and thermophysical properties of cerium monopnictides. Int J Thermophys. 2016;37(33):1-17.

Tosi MP, Fumi FG. Ionic sizes and Born repulsive parameters in the NaCl-type alkali halides-II. J Phys Chem Solids. 1964;25:45-52.

Fumi FG, Tosi MP. Ionic sizes and Born repulsive parameters in the NaCl-type alkali halides-I. J Phys Chem Solids. 1964;25:31-43.

Yadav RR, Singh D. Ultrasonic attenuation in lanthanum monochalcogenides. J Phys Soc Jpn. 2001;70:1825-32.

Tripathy C, Singh D, Paikaray R. Behaviour of elastic and ultrasonic properties of curium monopnictides. Can J Phys. 2018;96:513-8.

Mir SH, Jha PC, Islam MS, Banerjee A, Luo W, Dabhi SD, et al. Static and dynamical properties of heavy actinide monopnictides of lutetium. Sci Rep. 2016;6(29309):1-7.

Queheillalt DT, Wadley HNG. Temperature dependence of the elastic constants of solid and liquid Cd0.96Zn0.04Te obtained by laser ultrasound. J Appl Phys. 1998;83:4124-33.

Mouhat F, Coudert F. Necessary and sufficient elastic stability conditions in various crystal systems. Phys Rev B. 2014;90(224104):1-4.

Mason WP. Effect of impurities and phonon processes on the ultrasonic attenuation in germanium crystal, quartz and silicon. In: Mason WP, editor, Physical Acoustics, Vol. III, Part B. New York: Academic Press; 1965. p. 235-86.

Cahill DG, Watson SK, Pohl RO. Lower limit to the thermal conductivity of disordered crystals. Phys Rev B. 1992;46:6131-40.

Singh D, Bhalla V, Kumar R, Tripathi S. Behaviour of acoustical phonons in CeAs in low temperature region. Indian J Pure Appl Phys. 2015;53:169-74.

Singh D, Kumar A, Bhalla V, Thakur RK. Mechanical and thermophysical properties of actinide monocarbides. Mod Phys Lett B. 2018;32(21):1-9.

Singh D, Kumar A, Thakur RK, Kumar R. Elastic and ultrasonic properties of rare-earth monopnictides. Proc Natl Acad Sci India Sect A Phys Sci. 2018; https://doi.org/10.1007/s40010-018-0529-z.

Bhalla V, Kumar R, Tripathy C, Singh D. Mechanical and thermal properties of praseodymium monopnictides: an ultrasonic study. Int J Mod Phys B. 2013;27(22):1-28.

Singh D, Pandey DK, Yadawa PK. Ultrasonic wave propagation in rare-earth monochalcogenides. Cent Eur J Phys. 2009;7:198-205.

Singh D, Bhalla V, Bala J, Wadhwa S. Ultrasonic investigations on polonides of Ba, Ca and Pb. Z Naturforsch A. 2017;72(11):977-83.

Hanson RC. Attenuation of high frequency elastic waves in LiF. J Phys Chem Solids. 1967;28:475-83.

Kor SK, Yadav RR, Kailash. Ultrasonic attenuation in dielectric crystals. J Phys Soc Jpn. 1986;55:207-12.