Insect Flight Mechanism for a Micro Aerial Vehicle
Main Article Content
Abstract
Micro Aerial Vehicle (MAV) Technology is becoming very popular because it can be widely applied in novel battle tactics as well as operations in the environments that are danger to humans, such as searching and rescuing life in an explosion or fire events. The researcher therefore is interested in designing a flight mechanism of a MAV for an efficiently hovering flight. For this project, two flight mechanisms are designed and fabricated. The first mechanism is a mimic of an insect flight characteristics, in which two flapping wings are clapped together at the end of the upstroke and then separated, hence, a clap-and-fling mechanism. The second mechanism is a conventional method of flapping up and down. The lift and the thrust forces are measured in real-time using two load cells in x and y axes. The data is then processed by an arduino board. The experimental results illustrate that the second designed mechanism produce the highest average thrust at the angle of attack at 60 degree and the highest average lift at the angle of attack at 0 degrees.
Article Details
Copyright of all articles published is owned by CRMA Journal.
References
Taylor, G.K. Mechanics and aerodynamics of insect flight. Acta Mech. Sin. 19, 458-469 (2003).
Sane, S.P. The aerodynamics of insect flight. J. Exp. Biol. 206, 4191-4208 (2003).
Wang, Z. J. Dissecting Insect Flight. Annu. Rev. Fluid. 37, 183-210 (2005).
Shyy, W. et. al. Recent progress in flapping wing aerodynamics and aeroelasticity. Prog. Aerospace Sci. 46, 284-327 (2010).
Dudley, R. In The Biomechanics of Insect Flight: Form, Function, Evolution. 1st edn, (Princeton University Press, 2000).
Weis-Fogh, T. Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production. J. Exp. Biol. 59, 169–230 (1973).
Cheng, X. and Sun, M., “Wing-kinematics measurement and aerodynamics in a small insect in hovering flight”, Scientific Reports, Nature, (2016).
H. Liu, X. Wang and T. Nakata, “Aerodynamics and flight stability of a prototype flapping micro air vehicle”, Proc. of International Conference on Complex Medical Engineering, Japan, (2012).
Ukrit Wong and Luck Sawatdipon, “ Study the effects of bending in flapping wings” Bangkok, Thailand, (2014).
L. Zhao, Q. Huang and X. Deng “Aerodynamic effects of flexibility in flapping wings”, Department of Mechanical Engineering, University of Delaware, USA, (2009).
เมษัณฑ์ ธรรมวิชัย และ วิธวินท์ ศรีเพียรพล “Wing Designs for a small flying robot in hovering”, วารสารวิทยาศาสตร์และเทคโนโลยีนายเรืออากาศ, 14(1), 110-117, (2018).
วิธีการใช้งาน Load Cell กับ HX711 Amplifier Module [ออนไลน์] เข้าถึงได้จาก http://www.thaieasyelec.com/article-wiki/review-product-article/how-to-use-load- cell-and-hx711-amplifier-module.html (สืบค้นเมื่อวันที่ 25 พฤษภาคม 2560).
HX711 [ออนไลน์] เข้าถึงได้จาก https://www.arduitronics.com/product/694/weight-sensor-amplifier-module-hx711.html (สืบค้นเมื่อวันที่ 30 พฤษภาคม 2560).
Arduino [ออนไลน์] เข้าถึงได้ https://www.arduino.cc/ (สืบค้นเมื่อวันที่ 30 พฤษภาคม 2560).