Singly-Resonant OPO for CO2/CH4 DIAL Transmitter for Use in Atmospheric Studies

Main Article Content

Chat Chantjaroen

บทคัดย่อ

We report on a singly-resonant optical parametric oscillator (OPO) based on periodically poled MgO-doped LiNbO3. The OPO was pumped by a Q-switch pulsed 1064-nm Nd:YAG laser and was seeded by an amplified 1571-nm DFB CW laser. The OPO is designed particularly for use as a laser source for a Differential Absorption Lidar (DIAL) for CO2/CH4 atmospheric concentration mapping. Maximum average output pulse energy of ~2 mJ and optical-to-optical conversion efficiency of up to ~20% have been achieved. Given the performance results of our frequency-agile OPO, we demonstrated a potential use of OPO in DIAL instruments for measurements of CO2 (1571 nm) and CH4 (1645 nm).

Article Details

How to Cite
[1]
C. Chantjaroen, “Singly-Resonant OPO for CO2/CH4 DIAL Transmitter for Use in Atmospheric Studies”, Crma. J., ปี 16, ฉบับที่ 1, น. 143–154, ธ.ค. 2018.
บท
บทความวิจัย

References

E. Dlugokenchy and P Tans, 2017. NOAA/ESRL http://www.esrl.noaa.gov/gmd/ccgg/trends

National Oceanic and Atmospheric Administration, 2017. NOAA/ESRL http://www.esrl.noaa.gov/gmd/aggi

P. Ciais, C. Sabine, G. Bala, L. Bopp, V. Brovkin, J. Canadell, A. Chhabra, R. DeFries, J. Galloway, M. Heimann, C. Jones, C. Le Quere, R.B. Myneni, S. Piao, and P. Thornton, 2013. Carbon and Other Biogeochemical Cycles. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge, United Kingdom and New York, NY, USA : Cambridge University Press.

E. J. Dlugokencky, L. Bruhwiler, J. W. C. White, L. K. Emmons, P. C. Novelli, S. A. Montzka, K. A. Masarie, P. M. Lang, A. M. Crotwell, J. B. Miller, and L. V. Gatti, 2009. Observational constraints on recent increases in the atmospheric CH4 burden. Geophys. Res. Lett, 36.

R.M. Measures and G. Pilon, 1972. A study of tunable laser techniques for remote mapping of specific gaseous constituents of the atmosphere. Opt. Quant. Electron, 4(2) : 141-153.

J. L. Sarmiento, J. Louis, and C. W. Steven, 1999. A U.S. carbon cycle science plan. Boulder, CO, USA : University Corporation for Atmospheric Research.

A. M. Michalak, B. J. Robert, M. Gregg, L. S. Christopher, and the Cabon Cycle Science Working Group, 2011. A U.S. Carbon Cycle Science Plan. Boulder, CO, USA : University Corporation for Atmospheric Research.

National Research Council, 2007. Earth Science and Applications from Space: National Imperatives for the Next Generation and Beyond. USA : The National Academy Press.

National Research Council, 2010. Verifying Greenhouse Gas Emissions: Methods to Support International Climate Agreements. USA : The National Academy Press.

L. S. Rothman, A. Barbe, D. C. Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, W. J. Lafferty, J. Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, 2003. The HITRAN molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transfer, 82 : 5–44.

P. J. Rayner and D. M. O’Brien, 2001. The utility of remotely sensed CO2 concentration data in surface source inversions. Geophys. Res. Lett., 28 : 175.

A. Fix, C. Budenbender, M. Wirth, M. Quatrevalet, A. Amediek, C. Kiemle, and G. Ehret, 2011. Optical Parametric Oscillators and Amplifiers for Airborne and Spaceborne Active Remote Sensing of CO2 and CH4. Pro. SPIE, 8182 : 818206.

J. B. Abshire, H. Riris, C. J. Weaver, J. Moa, G. R. Allan, W. E. Hasselbrack, and E. V. Browell, 2013. Airborne measurements of CO2 column absorption and range using a pulsed direct detection integrated path differential absorption lidar. Appl. Opt., 52 : 4446.

M. Uchiumi, N. J. Vasa, M. Fujiwara, S. Yokoyama, M. Maeda, and O. Uchino, 2003. Development of DIAL for CO2 and CH4 in the atmosphere. Pro. SPIE, 4893 : 141.

G. J. Koch, B. W. Barnes, M. Petros, J. Y. Beyon, F. Amzajerdian, J. Yu, R. E. Davis, S. Ismail, S. Vay, M. J. Kavaya, and U. Singh, 2004. Coherent differential absorption lidar measurements of CO2. Appl. Opt., 43 : 5092.

D. Sakaizawa, C. Nagasawa, T. Nagai, M. Abo, Y. Shibata, M. Nakazato, and T. Sakai, 2009. Development of a 1.6 µm differential absorption lidar with quasi-phase matching optical parametric oscillator and photon counting detector for the vertical CO2 profile. Appl. Opt., 48 : 748.

C. Nagasawa, M. Abo, Y. Shibata, T. Nagai, and M. Tsukamoto, 2011. Direct detection 1.6 µm DIAL for measurements of CO2 concentration profiles in the troposphere. Pro. SPIE, 8182 : 81820G.

W. Johnson, K. S. Repasky, and J. L. Carlsten, 2013. Micropulse differential absorption lidar for identification of carbon sequestration site leakage. Appl. Opt., 52 : 2994.

F. Gibert, P. H. Flamant, D. Bruneau, and C. Loth, 2006. Two micrometer heterodyne differential absorption lidar measurements of the atmospheric CO2 mixing ratio in the boundary layer. Appl. Opt., 45 : 4448.

A. Amediek, A. Fix, M. Wirth, and G. Ehret, 2008. Development of an OPO system at 1.57 µm for integrated path DIAL measurements of atmospheric carbon dioxide. Appl. Phys. B, 92 : 295.

S. Kameyama, M. Imaki, . Hirano, S. Ueno, S. Kawakami, D. Sakaizawa, and M. Nakajima, 2009. Development of a 1.6 µm continuous wave modulation hard target differential absorption lidar system for CO2 sensing. Opt. Lett., 34 : 1513.

T. F. Refaat, S. Ismail, G. J. Koch, M. Rubio, T. L. Mack, A. Notari, J. E. Collins, J. Lewis, R. De Young, Y. Choi, M. N. Abedin, and U. N. Singh, 2011. Backscatter 2 µm Lidar Validation for Atmospheric CO2 Differential Absorption Lidar Applications. IEEE Transactions on Geosciences and Remote, 49 : 572.

K. Ikuta, N. Yoshikane, N. Vasa, Y. Oki, M. Maeda, M. Uchiumi, Y. Tsumura, J. Nakagawa, and N. Kawada, 1999. Differential Absorption Lidar at 1.67 µm for remote sensing of Methane Leakage. Japanese J. Appl. Phys., 38 : 110.

T. Shuman, R. Burnham, A. R. Nehrir, S. Ismail, J. W. Hair, T. Refaat, 2013. Efficient 1.6 Micron Laser Source for Methane DIAL. Pro. SPIE, 8872 : 88720A.

T. F. Refaat, S. Ismail, A. R. Nehrir, J. W. Hair, J. H. Crawford, I. Leifer, and T. Shuman, 2013. Performance evaluation of a 1.6 µm methane DIAL system from ground, aircraft and UAV platforms. Opt. Express, 21 : 30415-30432.

AS-Photonics, 2017. SNLO. http://www.as-photonics.com/snlo.