Development of a Data-driven Energy Monitoring System for Power Consumption and Power Quality Monitoring

Authors

DOI:

https://doi.org/10.69650/rast.2025.263660

Keywords:

Smart Metering , IoT , Energy Monitoring , Fog-Cloud , Power Quality , Rule-Based System, the UTS Research Grant

Abstract

The rapid growth of global electricity demand and the widespread adoption of non-linear loads have intensified power quality (PQ) concerns, revealing critical limitations of existing energy metering solutions. These systems lack real-time monitoring, data granularity, and analytical capabilities necessary for advanced energy and power quality management. This paper presents the design, development, and validation of the Data-Driven Energy Monitoring System (DDEMS), an IoT-based platform integrating smart metering, edge computing, and hybrid analytics for real-time PQ assessment and energy management. The system combines low-cost sensors such as PZEM-004T, ZMPT101B and SCT-013, incorporated with an ESP32 microcontroller to measure key electrical parameters, and classify PQ events using a cloud-based rule-based engine which compliance with IEEE 1159 and IEC 61000-4-30 for power quality standards. Experimental validation was conducted on DDEMS against the calibrated Lovato DMG800 power multimeter and Fluke 437-II demonstrated its accuracy with overall system measurement errors at 1.24% of mean absolute percentage error (MAPE). Furthermore, the system successfully identified and categorized PQ disturbances into four severity levels, enabling timely mitigation the issues such as supply voltage fluctuations, harmonic distortions, and poor power factors. A subsequent 90-day field deployment in residential settings confirmed the system's reliability, and a web-based dashboard facilitating energy optimization with power quality monitoring. DDEMS addresses key limitations of existing solutions by offering a cost-effective, scalable alternative to expensive PQ analyzers while maintaining high accuracy and real-time capabilities. The system's modular architecture and successful real-world implementation highlight its potential for widespread adoption in smart energy management applications.

References

Vedanarayanan, V., Vibhakar, C., Sujaatha, A., Chavda, J. K., Karthik, M., Pramila, P. V. and Raghavan, I. K., Utilization of sustainable resources for promoting energy efficiency in environment using smart technologies. International Journal of Photoenergy. (2022) 6711300, doi: https://doi.org/10.1155/2022/6711300.

Pandiyan, P., Saravanan, S., Usha, K., Kannadasan, R., Alsharif, M. H. and Kim, M. K. Technological advancements toward smart energy management in smart cities. Energy Reports. 10 (2023) 648–677, doi: https://doi.org/10.1016/j.egyr.2023.07.021.

International Energy Agency. World energy outlook 2023, OECD Publishing, 2023, doi: https://doi.org/10.1787/827374a6-en.

Islam, S., Muyeen, S. M., Iqbal, A., Bakhsh, F. I. and Ben-Brahim, L., Effect of battery storage based electric vehicle chargers on harmonic profile of power system network, current scenario and future scope. Journal of Energy Storage. 131 (2025) 117563, doi: https://doi.org/10.1016/j.est.2025.117563.

Beleiu, H. G., Beleiu, I. N., Pavel, S. G. and Darab, C. P., Management of power quality issues from an economic point of view. Sustainability. 10 (2018) 2326, doi: https://doi.org/10.3390/su10072326.

Khan, A. A., Faheem, M., Bashir, R. N., Wechtaisong, C. and Abbas, M. Z., Internet of things (IoT) assisted context aware fertilizer recommendation. IEEE Access. 10 (2022) 129505–129519, doi: https://doi.org/10.1109/ACCESS.2022.3228160.

Khan, A. A., Nauman, M. A., Bashir, R. R., Jahangir, R., Alroobaea, R. and Binmahfoudh, A., Context aware evapotranspiration (ETs) for saline soils reclamation. IEEE Access. 10 (2022) 110050–110063, doi: https://doi.org/10.1109/ACCESS.2022.3206009.

Bashir, R. N., Khan, F. A., Khan, A. A., Tausif, M., Abbas, M. Z., Shahid, M. M. A. and Khan, N., Intelligent optimization of reference evapotranspiration (ETo) for precision irrigation. Journal of Computational Science. 69 (2023) 102025, doi: https://doi.org/10.1016/j.jocs.2023.102025.

HIOKI E.E. CORPORATION (Hioki). Power quality analyzers, power loggers | FAQ, <https://www.hioki.com/sg-en/support/faq/pqa#anc-5592> (n.d.).

Alahakoon, D. and Yu, X., Smart electricity meter data intelligence for future energy systems: A survey. IEEE Transactions on Industrial Informatics. 12 (2016) 425–436, doi: https://doi.org/10.1109/TII.2015.2414355.

Stjelja, D., Kuzmanovski, V., Kosonen, R. and Jokisalo, J., Building consumption anomaly detection: A comparative study of two probabilistic approaches. Energy and Buildings. 313 (2024) 114249, doi: https://doi.org/10.1016/j.enbuild.2024.114249.

Rind, Y. M., Raza, M. H., Zubair, M., Mehmood, M. Q. and Massoud, Y., Smart energy meters for smart grids, an internet of things perspective. Energies. 16 (2023) 1974, doi: https://doi.org/10.3390/en16041974.

Rafiq, H., Manandhar, P., Rodriguez-Ubinas, E., Ahmed Qureshi, O. and Palpanas, T., A review of current methods and challenges of advanced deep learning-based non-intrusive load monitoring (NILM) in residential context. Energy and Buildings. 305 (2024) 113890, doi: https://doi.org/10.1016/j.enbuild.2024.113890.

Mozaffari, M., Doshi, K. and Yilmaz, Y., Real-time detection and classification of power quality disturbances. Sensors. 22 (2022) 7958, doi: https://doi.org/10.3390/s22207958.

Kujur, A., Raza, Z., Khan, A. A. and Wechtaisong, C., Data complexity based evaluation of the model dependence of brain MRI images for classification of brain tumor and Alzheimer’s disease. IEEE Access. 10 (2022) 112117–112133, doi: https://doi.org/10.1109/ACCESS.2022.3216393.

Khan, A. A., Driss, M., Boulila, W., Sampedro, G. A., Abbas, S. and Wechtaisong, C., Privacy preserved and decentralized smartphone recommendation system. IEEE Transactions on Consumer Electronics. 70 (2024) 4617–4624, doi: https://doi.org/10.1109/TCE.2023.3323406.

Van den Broeck, G., Stuyts, J. and Driesen, J., A critical review of power quality standards and definitions applied to DC microgrids. Applied Energy. 229 (2018) 281–288, doi: https://doi.org/10.1016/j.apenergy.2018.07.058.

Yan, Y., Chen, K., Geng, H., Fan, W. and Zhou, X. A review on intelligent detection and classification of power quality disturbances: Trends, methodologies, and prospects. CMES - Computer Modeling in Engineering and Sciences. 137 (2023) 1345–1379, doi: https://doi.org/10.32604/cmes.2023.027252.

Kee, K. K., Rashidi, R., Kee, O. K. H., Han, A. B., Patrick, I. Z. and Bawen, L. M., Context-aware self-powered intelligent soil monitoring system for precise agriculture. International Journal of Electrical and Computer Engineering (IJECE). 15 (2025) 1123–1131, doi: https://doi.org/10.11591/ijece.v15i1.pp1123-1131.

Sabireen, H. and Neelanarayanan, V. A review on fog computing: Architecture, fog with IoT, algorithms and research challenges. ICT Express. 7 (2021) 162–176, doi: https://doi.org/10.1016/j.icte.2021.05.004.

Mudaliar, M. D. and Sivakumar, N., IoT based real time energy monitoring system using Raspberry Pi. Internet of Things. 12 (2020) 100292, doi: https://doi.org/10.1016/j.iot.2020.100292.

Sushma, N., Suresh, H. N., Mohana, L. J. and Santhosh Kumar, K. B., Experimental investigation on wireless integrated smart system for energy and water resource management in Indian smart cities. Results in Engineering. 23 (2024) 102687, doi: https://doi.org/10.1016/j.rineng.2024.102687.

Zheng, Y., Development of a ubiquitous industrial data acquisition system for rotogravure printing press. Journal of Networks. 6 (2011) 1543–1548, doi: https://doi.org/10.4304/jnw.6.11.1543-1548.

Rustemli, S., Satici, M. A., Şahin, G. and van Sark, W., Investigation of harmonics analysis power system due to non-linear loads on the electrical energy quality results. Energy Reports. 10 (2023) 4704–4732, doi: https://doi.org/10.1016/j.egyr.2023.11.034.

Eroğlu, H., Cuce, E., Mert Cuce, P., Gul, F. and Iskenderoğlu, A., Harmonic problems in renewable and sustainable energy systems: A comprehensive review. Sustainable Energy Technologies and Assessments. 48 (2021) 101566, doi: https://doi.org/10.1016/j.seta.2021.101566.

Fischer-Cripps, A. C. Newnes interfacing companion. Newnes, 2002.

Michalec, Ł., Jasiński, M., Sikorski, T., Leonowicz, Z., Jasiński, Ł. and Suresh, V., Impact of harmonic currents of nonlinear loads on power quality of a low voltage network–review and case study. Energies. 14 (2021) 3665, doi: https://doi.org/10.3390/en14123665.

Nuñez-Ramírez, V., Guerrero-Rodríguez, N., Batista-Jorge, R. O., Mercado-Ravelo, R., Ramírez-Rivera, F. A., Ferreira, J. A. and Ramos-Ciprian, R. D., Harmonic distortion caused by non-linear household loads: Measurement and modelling. Results in Engineering. 25 (2025) 104483, doi: https://doi.org/10.1016/j.rineng.2025.104483.

Qi, H. and Zhao, C., Research and implementation of harmonic detection and current compensation technology in active power filter in Chinese Control Conference (CCC). (2016), 10008–10012, doi: https://doi.org/10.1109/CHICC.2016.7554938.

MyElectronicHome. Arduino House current limit system (SCT-013-030), https://myelectronichome.altervista.org/blog/en/too-much-current-detector-absorbed-from-the-house-made-with-arduino-and-sct-013-020-or-013-030-sct/> (n.d.).

Munson, D. C. Reference Data for Engineers: Radio, Electronics, Computer, and Communications. 9th edn., Newnes, 2002, doi: https://doi.org/10.1016/B978-075067291-7/50009-1.

Grami, A. in Introduction to digital communications: Fundamental aspects of digital communication, Ch. 2, Academic Press, (2016) 11–39, doi: https://doi.org/10.1016/B978-0-12-407682-2.00002-8.

Electronics Tutorials. Harmonics and harmonic frequency in AC circuits, <https://www.electronics-tutorials.ws/accircuits/harmonics.html> (n.d.).

Thentral, T. M. T., Palanisamy, R., Usha, S., Bajaj, M., Zawbaa, H. M. and Kamel, S. Analysis of power quality issues of different types of household applications. Energy Reports. 8 (2022) 5370–5386, doi: https://doi.org/10.1016/j.egyr.2022.04.010.

Joga, S. R. K., Naidu Surisetti, S. S. M., Karri, S., Jalaluddin, S., Madhu, K. and Shiva, J. Detection and classification of changes in voltage magnitude during various power quality disturbances. in 2023 4th International Conference for Emerging Technology (INCET). (2023), 1-6, doi: https://doi.org/10.1109/INCET57972.2023.10170211.

Lovato Electric. DMG800 | Energy meters and power analyzers, <https://catalogue.lovatoelectric.com/gl_en/DMG800/snp> (n.d.).

Chang, Y. F., Lin, C. J., Chyan, J. M., Chen, I. M. and Chang, J. E., Multiple regression models for the lower heating value of municipal solid waste in Taiwan. Journal of Environmental Management. 85 (2007) 891–899, doi: https://doi.org/10.1016/j.jenvman.2006.10.025.

Downloads

Published

29 November 2025

How to Cite

KEE, O. K.-H., KEE, K.-K., YONG, C. Y., Rashidi, R., & LO, T. H. (2025). Development of a Data-driven Energy Monitoring System for Power Consumption and Power Quality Monitoring. Journal of Renewable Energy and Smart Grid Technology, 20(2), 163–175. https://doi.org/10.69650/rast.2025.263660

Issue

Section

Research articles