A Survey of Techniques for Secured and Swift Data Transfer in Smart Grid System

Authors

  • R. R. Ramya Department of Information Technology, University College of Engineering, Nagercoil, Tamilnadu 629004, India
  • J. Banumathi Department of Information Technology, University College of Engineering, Nagercoil, Tamilnadu 629004, India

DOI:

https://doi.org/10.69650/rast.2025.262073

Keywords:

IoT-Internet of Things, Routing Protocols, Cryptography, Genetic Algorithm , Smart Grid, Base Station

Abstract

The integration of Internet of Things (IoT) technology into smart grids is essential for enabling uninterrupted, bidirectional communication across all components of the power system. This connectivity enhances system reliability, efficiency and operational effectiveness. Among the various domains within the smart grid, sensor networks present the greatest potential for IoT deployment due to their role in real-time data collection and monitoring. The architecture of IoT-based smart grids encompasses key layers facilitating distributed generation and intelligent control. These structures span from power generation to end-user consumption, allowing each segment of the grid to benefit from IoT applications. In this study, Routing protocols, Optimization approaches and Cryptographic techniques are studied and analysed to ensure secure and efficient data transmission within intelligent grids. The comparative analysis of these techniques is conducted to evaluate the performance, highlighting their effectiveness in enhancing smart grid communication and management.

References

Al Mhdawi, A. K., Al-Raweshidy, H. S., A smart optimization of fault diagnosis in electrical grid using distributed software-defined IoT system. IEEE Systems Journal. 14 (2020) 2780–2790, doi: https://doi.org/10.1109/JSYST.2019.2921867.

Li, L., Zhao, X., Geng, S. and Zhang, Y., An efficient partially overlapping channels assignment for smart grid IoT with differentiated QoS. IEEE Access.7 (2019) 165207–165216, doi: https://doi.org/10.1109/ACCESS.2019.2952125.

Ahmadzadeh, S., Parr, G. and Zhao, W., A review on communication aspects of demand response management for future 5G IoT-based smart grids. IEEE Access. 9 (2021) 77555–77571, doi: https://doi.org/10.1109/ACCESS.2021.3082430.

Franco, P., Martinez, J. M., Kim, Y.C. and Ahmed, M. A., IoT based approach for load monitoring and activity recognition in smart homes. IEEE Access. 9 (2021) 45325–45339, doi: https://doi.org/10.1109/ACCESS.2021.3067029.

Chen, S., Wen, H., Wu, J., Lei, W., Hou, W., Liu, W., Xu, A. and Jiang, Y., Internet of things based smart grids supported by intelligent edge computing. IEEE access. 7 (2019) 74089–74102, doi: https://doi.org/10.1109/ACCESS.2019.2920488.

Guan, Z., Li, J., Wu, L., Zhang, Y., Wu, J. and Du, X., Achieving efficient and secure data acquisition for cloud-supported internet of things in smart grid. IEEE Internet of Things Journal. 4 (2017) 1934–1944, doi: https://doi.org/10.1109/JIOT.2017.2690522.

Wang, Z., Liu, Y., Ma, Z., Liu, X. and Ma, J., LiPSG: Lightweight privacy-preserving Q-learning-based energy management for the IoT-enabled smart grid. IEEE Internet of Things Journal. 7 (2020) 3935–3947, doi: https://doi.org/10.1109/JIOT.2020.2968631.

Li, X., Huang, Q. anad Wu, D., Distributed large-scale co-simulation for IoT-aided smart grid control. IEEE Access. 5 (2017) 19951–19960, doi: https://doi.org/10.1109/ACCESS.2017.2753463.

Ghosh, S., Neuro-Fuzzy-Based IoT assisted power monitoring system for smart grid. IEEE Access. 9 (2021) 168587–168599, doi: https://doi.org/10.1109/ACCESS.2021.3137812.

Hussain, S., Ullah, I., Khattak, H., Adnan, M., Kumari, S., Ullah, S. S., Khan, M. A. and Khattak, S. J., A lightweight and formally secure certificate based signcryption with proxy re-encryption (CBSRE) for Internet of Things enabled smart grid. IEEE Access. 8 (2020) 93230–93248, doi: https://doi.org/10.1109/ACCESS.2020.2994988.

Saleem, M. U., Usman, M. R. and Shakir, M., Design, implementation, and deployment of an IoT based smart energy management system. IEEE Access. 9 (2021) 59649–59664, doi: https://doi.org/10.1109/ACCESS.2021.3070960.

Barbierato, L., Estebsari, A., Pons, E., Pau, M., Salassa, F., Ghirardi, M. and Patti, E., A distributed IoT infrastructure to test and deploy real-time demand response in smart grids. IEEE Internet of Things Journal. 6 (2019) 1136–1146, doi: https://doi.org/10.1109/JIOT.2018.2867511.

Abir, S. M. A. A., Anwar, A., Choi, J. and Kayes, A. S. M., IoT-enabled smart energy grid: Applications and challenges. IEEE access. 9 (2021) 50961–50981, doi: https://doi.org/10.1109/ACCESS.2021.3067331.

Morello, R., De Capua, C., Fulco, G. and Mukhopadhyay, S. C., A smart power meter to monitor energy flow in smart grids: The role of advanced sensing and IoT in the electric grid of the future. IEEE Sensors Journal. 17 (2017) 7828–7837, doi: https://doi.org/10.1109/JSEN.2017.2760014.

Saleem, M.U., Usman, M. R., Usman, M. A. and Politis, C., Design, deployment and performance evaluation of an IoT based smart energy management system for demand side management in smart grid. IEEE Access. 10 (2022) 15261–15278, doi: https://doi.org/10.1109/ACCESS.2022.3147484.

Sobral, J. V. V., Rodrigues, J. J. P. C., Rabêlo, R. A. L., Saleem, K. and Kozlov, S. A., Improving the performance of LOADng routing protocol in mobile IoT scenarios. IEEE Access. 7 (2019) 107032–107046, doi: https://doi.org/10.1109/ACCESS.2019.2932718.

Lenka, R. K., Rath, A. K. and Sharma, S., Building reliable routing infrastructure for green IoT network. IEEE Access. 7 (2019) 129892–129909, doi: https://doi.org/10.1109/ACCESS.2019.2939883.

Al-Janabi, T. A. and Al-Raweshidy, H. S., A centralized routing protocol with a scheduled mobile sink-based AI for large scale I-IoT. IEEE Sensors Journal. 18 (2018) 10248–10261, doi: https://doi.org/10.1109/JSEN.2018.2873681.

Tsai, R. -G., Tsai, P. -H., Shih, G. -R. and Tu, J., RPL Based Emergency Routing Protocol for Smart Buildings. IEEE Access. 10 (2022) 18445–18455, doi: https://doi.org/10.1109/ACCESS.2022.3150928.

Patel, N. R., Kumar, S. and Singh, S. K., Energy and collision aware WSN routing protocol for sustainable and intelligent IoT applications. IEEE Sensors Journal. 21 (2021) 25282–25292, doi: https://doi.org/10.1109/JSEN.2021.3076192.

Zhu, M., Chang, L., Wang, N. and You, I., A smart collaborative routing protocol for delay sensitive applications in industrial IoT. IEEE Access. 8 (2020) 20413–20427, doi: https://doi.org/10.1109/ACCESS.2019.2963723.

Haseeb, K., Islam, N., Almogren, A., Din, I. Ud., Almajed, H. N. and Guizani, N., Secret sharing-based energy-aware and multi-hop routing protocol for IoT based WSNs. IEEE Access. 7 (2019) 79980–79988, doi: https://doi.org/10.1109/ACCESS.2019.2922971.

Lenka, R. K., Rath, A. K., Tan, Z., Sharma, S., Puthal, D., Simha, N. V., Prasad, M., Raja, R. and Tripathi, S. S., Building scalable cyber-physical-social networking infrastructure using IoT and low power sensors. IEEE Access. 6 (2018) 30162–30173, doi: https://doi.org/10.1109/ACCESS.2018.2842760.

Khan, I. U., Qureshi, I. M., Aziz, M. A., Cheema, T. A. and Shah, S. B. H., Smart IoT control-based nature inspired energy efficient routing protocol for flying ad hoc network (FANET). IEEE Access. 8 (2020) 56371–56378, doi: https://doi.org/10.1109/ACCESS.2020.2981531.

Biason, A., Pielli, C., Rossi, M., Zanella, A., Zordan, D., Kelly, M., Zorzi, M., EC-CENTRIC: An energy-and context-centric perspective on IoT systems and protocol design. IEEE Access. 5 (2017) 6894–6908, doi: https://doi.org/10.1109/ACCESS.2017.2692522.

Lin, J. -W., Chelliah, P. R., Hsu, M. -C. and Hou, J. -X., Efficient fault-tolerant routing in IoT wireless sensor networks based on bipartite-flow graph modeling. IEEE access. 7 (2019) 14022–14034, doi: https://doi.org/10.1109/ACCESS.2019.2894002.

Shin, D., Yun, K., Kim, J., Astillo, P. V., Kim, J. -N. and You, I., A security protocol for route optimization in DMM-based smart home IoT networks. IEEE Access. 7 (2019) 142531–142550, doi: https://doi.org/10.1109/ACCESS.2019.2943929.

Hussain, S., Ullah, I., Khattak, H., Adnan, M., Kumari, S., Ullah, S. S., Khan, M. A. and Khattak, S. J., A lightweight and formally secure certificate based signcryption with proxy re-encryption (CBSRE) for Internet of Things enabled smart grid. IEEE Access. 8 (2020) 93230–93248, doi: https://doi.org/10.1109/ACCESS.2020.2994988.

Bera, B., Saha, S., Das, A. K. and Vasilakos, A. V., Designing blockchain-based access control protocol in IoT-enabled smart-grid system. IEEE Internet of Things Journal. 8 (2021) 5744–5761, doi: https://doi.org/10.1109/JIOT.2020.3030308.

Gunduz, M. Z. and Das, R., Cyber-security on smart grid: Threats and potential solutions. Computer networks. 169 (2020) 107094, doi: https://doi.org/10.1016/j.comnet.2019.107094.

Saleem, A., Khan, A., Malik, S. U., Pervaiz, H., Malik, H., Alam, M. and Jindal, A., FESDA: Fog-enabled secure data aggregation in smart grid IoT network. IEEE Internet of Things Journal. 7 (2020) 6132–6142, doi: https://doi.org/10.1109/JIOT.2019.2957314.

Minh, Q. N., Nguyen, V. -H., Quy, V. K., Ngoc, L. A., Chehri, A. and Jeon, G., Edge Computing for IoT-Enabled Smart Grid: The Future of Energy. Energies. 15 (2022) 6140, doi: https://doi.org/10.3390/en15176140.

Agarkar, A. and Agrawal, H., A review and vision on authentication and privacy preservation schemes in smart grid network. Security and Privacy. 2 (2019) e62, doi: https://doi.org/10.1002/spy2.62.

Bhuiyan, M. Z. A., Zaman, M., Wang, G., Wang, T., Rahman, M. A. and Tao, H. Protected bidding against compromised information injection in IoT-based smart grid. in Pathan, AS., Fadlullah, Z., Guerroumi, M. (eds) Smart Grid and Internet of Things (SGIoT 2018), (2019) 78–84, doi: https://doi.org/10.1007/978-3-030-05928-6_8.

Choo, K. -K. R., Gritzalis, S. and Park, J. H., Cryptographic solutions for industrial Internet-of-Things: Research challenges and opportunities. IEEE Transactions on Industrial Informatics. 14 (2018) 3567–3569, doi: https://doi.org/10.1109/TII.2018.2841049.

Sakhnini, J., Karimipour, H., Dehghantanha, A., Parizi, R. M. and Srivastava, G., Security aspects of Internet of Things aided smart grids: A bibliometric survey. Internet of things. 14 (2021) 100111, doi: https://doi.org/10.1016/j.iot.2019.100111.

Alladi, T., Chamola, V., Rodrigues, J. J. P. C. and Kozlov, S.A., Blockchain in smart grids: A review on different use cases. Sensors. 19 (2019) 4862, doi: https://doi.org/10.3390/s19224862.

Pawar, P. and Vittal K. P., Design and development of advanced smart energy management system integrated with IoT framework in smart grid environment. Journal of Energy Storage. 25 (2019) 100846, doi: https://doi.org/10.1016/j.est.2019.100846.

Iwendi, C., Maddikunta, P. K. R., Gadekallu, T. R., Lakshmanna, K., Bashir, A. K. and Piran, M. J., A metaheuristic optimization approach for energy efficiency in the IoT networks. Software: Practice and Experience. 51 (2021) 2558–2571, doi: https://doi.org/10.1002/spe.2797.

Mao, S., Dong, Z., Schultz, P., Tang, Y., Meng, K., Dong, Z. Y. and Qian, F., A finite-time distributed optimization algorithm for economic dispatch in smart grids. IEEE Transactions on Systems, Man, and Cybernetics: Systems. 51 (2021) 2068–2079, doi: https://doi.org/10.1109/TSMC.2019.2931846.

Manoharan, H., Teekaraman, Y., Kirpichnikova, I., Kuppusamy, R., Nikolovski, S. and Baghaee, H. R., Smart grid monitoring by wireless sensors using binary logistic regression. Energies. 13 (2020) 3974, doi: https://doi.org/10.3390/en13153974.

Tastan, M., Internet of things based smart energy management for smart home. KSII Transactions on Internet and Information Systems. 13 (2019) 2781–2798,

doi: https://doi.org/10.3837/tiis.2019.06.001.

Yang, Q. and Wang, H., Privacy-preserving transactive energy management for IoT-aided smart homes via blockchain. IEEE Internet of Things Journal. 8 (2021) 11463–11475, doi: https://doi.org/10.1109/JIOT.2021.3051323.

Li, P., Guo, S. and Cheng, Z., Joint optimization of electricity and communication cost for meter data collection in smart grid. IEEE Transactions on Emerging Topics in Computing. 1 (2013) 297–306, doi: https://doi.org/10.1109/TETC.2013.2273890.

Amjad, Z., Shah, M. A., Maple, C., Khattak, H. A., Ameer, Z., Asghar, M. N. and Mussadiq, S., Towards energy efficient smart grids using bio-inspired scheduling techniques. IEEE Access. 8 (2020) 158947–158960, doi: https://doi.org/10.1109/ACCESS.2020.3020027.Sanchez-Huertas, W., Gómez, V. and Hernández, C., Optimization algorithms for solving microgrid and smart grid integration problems. International Journal of Applied Engineering Research. 13 (2018) 14886–14892.

Sanchez-Huertas, W., Gómez, V., Hernández, C. Optimization algorithms for solving microgrid and smart grid integration problems. International Journal of Applied Engineering Research. 13(21) (2018)14886–14892.

Wang, K., Wang, Y., Hu, X., Sun, Y., Deng, D. J., Vinel, A. and Zhang, Y., Wireless big data computing in smart grid. IEEE Wireless Communications. 24 (2017) 58–64, doi: https://doi.org/10.1109/MWC.2017.1600256WC.

Molderink, A., Bakker, V., Bosman, M. G. C., Hurink, J. L. and Smit, G. J. M., Management and control of domestic smart grid technology. IEEE transactions on Smart Grid. 1 (2010) 109–119, doi: https://doi.org/10.1109/TSG.2010.2055904.

Shehadeh, H. A., Idna Idris, M. Y., Ahmedy, I., Ramli, R. and Mohamed Noor, N., The multi-objective optimization algorithm based on sperm fertilization procedure (MOSFP) method for solving wireless sensor networks optimization problems in smart grid applications. Energies. 11 (2018) 97, doi: https://doi.org/10.3390/en11010097.

Zhang, K., Hu, Z., Zhan, Y., Wang, X. and Guo, K., A smart grid AMI intrusion detection strategy based on extreme learning machine. Energies. 13 (2020) 4907, doi: https://doi.org/10.3390/en13184907.

Downloads

Published

22 October 2025

How to Cite

Ramya, R. R., & Banumathi, J. . (2025). A Survey of Techniques for Secured and Swift Data Transfer in Smart Grid System. Journal of Renewable Energy and Smart Grid Technology, 20(2), 116–127. https://doi.org/10.69650/rast.2025.262073

Issue

Section

Research articles