Anti Cutibacterium acnes properties from Cannabis sativa
Main Article Content
บทคัดย่อ
The antimicrobial potential of various cannabis compounds against Cutibacterium acnes
(C. acnes) remains a subject of significant interest in dermatological research. This review aims to elucidate the mechanisms underlying the antibacterial activity of major cannabis compounds, including cannabidiolic acid (CBDA), cannabidiol (CBD), cannabinodiol (CBND), tetrahydrocannabinolic acid (THCA), Δ9-trans-tetrahydrocannabinol (Δ9-THC), Δ8-trans-tetrahydrocannabinol (Δ8-THC), cannabigerol (CBG), and cannabigerolic acid (CBGA). Many cannabis compounds showed antibacterial activity against several Gram-positive bacteria, including Staphylococcus aureus (S. aureus), Staphylococcus epidermidis (S. epidermidis), methicillin-resistant S. aureus (MRSA), and C. acnes, by acting as detergents and permeabilizing bacterial cell membranes by disrupting bacterial biofilms and membrane integrity. Some compounds, such as THCA, the precursor to THC, and THC derivatives, have shown inhibitory effects against staphylococci and streptococci bacteria, but their specific impact on C. acnes requires further investigation. In conclusion, while several cannabis compounds show promising antibacterial activity against various pathogens, including C. acnes, further research
is warranted to elucidate their precise mechanisms of action and therapeutic potential in dermatological applications. These findings underscore the importance of investigating cannabis-derived compounds as potential agents for combating bacterial infections, including those affecting the skin. These findings underscore the importance of investigating cannabis-derived compounds as potential agents for combating bacterial infections, including those affecting the skin.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
ความคิดเห็นและข้อเสนอแนะใดๆ ที่นำเสนอในบทความเป็นของผู้เขียนแต่เพียงผู้เดียว โดยบรรณาธิการ กองบรรณาธิการ และคณะกรรมการวารสารวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยปทุมธานี ไม่ได้มีส่วนเกี่ยวข้องแต่อย่างใด มหาวิทยาลัย บรรณาธิการ และกองบรรณาธิการจะไม่รับผิดชอบต่อข้อผิดพลาดหรือผลที่เกิดจากการใช้ข้อมูลที่ปรากฏในวารสารฉบับนี้
References
Aqawi, M., Sionov, R. V., Gallily, R., Friedman, M., & Steinberg, D. (2021). Anti-Bacterial Properties of Cannabigerol Toward Streptococcus mutans. Frontiers in microbiology, 12, 656471. https://doi.org/10.3389/fmicb.2021.656471
Aqawi, M., Sionov, R. V., Gallily, R., Friedman, M., & Steinberg, D. (2021). Anti-Biofilm Activity of Cannabigerol against Streptococcus mutans. Microorganisms, 9 (10), 2031. https://doi.org/10.3390/microorganisms9102031
Aqawi, M., Steinberg, D., Feuerstein, O., Friedman, M., & Gingichashvili, S. (2022). Cannabigerol Effect on Streptococcus mutans Biofilms-A Computational Approach to Confocal Image Analysis. Frontiers in microbiology, 13, 880993. https://doi.org/10.3389/fmicb.2022.880993
Aswad, M., Hamza, H., Pechkovsky, A., Zikrach, A., Popov, T., Zohar, Y., Shahar, E., & Louria-Hayon, I. (2022). High-CBD Extract (CBD-X) Downregulates Cytokine Storm Systemically and Locally in Inflamed Lungs. Frontiers in immunology, 13, 875546. https://doi.org/10.3389/fimmu.2022.875546
Atakan Z. (2012). Cannabis, a complex plant: different compounds and different effects on individuals. Therapeutic advances in psychopharmacology, 2(6), 241–254. https://doi.org/10.1177/2045125312457586
Atalay, S., Gęgotek, A., Domingues, P., & Skrzydlewska, E. (2021). Protective effects of cannabidiol on the membrane proteins of skin keratinocytes exposed to hydrogen peroxide via participation in the proteostasis network. Redox biology, 46, 102074. https://doi.org/10.1016/j.redox.2021.102074
Baswan, S. M., Klosner, A. E., Glynn, K., Rajgopal, A., Malik, K., Yim, S., & Stern, N. (2020). Therapeutic Potential of Cannabidiol (CBD) for Skin Health and Disorders. Clinical, cosmetic and investigational dermatology, 13, 927–942. https://doi.org/10.2147/CCID.S286411
Baswan, S. M., Klosner, A. E., Glynn, K., Rajgopal, A., Malik, K., Yim, S., & Stern, N. (2020). Therapeutic Potential of Cannabidiol (CBD) for Skin Health and Disorders. Clinical, cosmetic and investigational dermatology, 13, 927–942. https://doi.org/10.2147/CCID.S286411
Blaskovich, M. A. T., Kavanagh, A. M., Elliott, A. G., Zhang, B., Ramu, S., Amado, M., Lowe, G. J., Hinton, A. O., Pham, D. M. T., Zuegg, J., Beare, N., Quach, D., Sharp, M. D., Pogliano, J., Rogers, A. P., Lyras, D., Tan, L., West, N. P., Crawford, D. W., Peterson, M. L., … Thurn, M. (2021). The antimicrobial potential of cannabidiol. Communications biology, 4(1), 7. https://doi.org/10.1038/s42003-020-01530-y
Cavalli, J., & Dutra, R. C. (2021). A closer look at cannabimimetic terpenes, polyphenols, and flavonoids: a promising road forward. Neural regeneration research, 16(7), 1433–1435. https://doi.org/10.4103/1673-5374.301011
Cooper, Z. D., & Haney, M. (2009). Actions of delta-9-tetrahydrocannabinol in cannabis: relation to use, abuse, dependence. International review of psychiatry (Abingdon, England), 21(2), 104–112. https://doi.org/10.1080/09540260902782752’
Das, P. C., Vista, A. R., Tabil, L. G., & Baik, O. D. (2022). Postharvest Operations of Cannabis and Their Effect on Cannabinoid Content: A Review. Bioengineering (Basel, Switzerland), 9(8), 364. https://doi.org/10.3390/bioengineering9080364
Ferreira, I., C.M. Lopes, and M.H. Amaral. (2024). Treatment Advances for Acne Vulgaris: The Scientific Role of Cannabinoids. Cosmetics, 11(1): p. 22.
Filipiuc, S. I., Neagu, A. N., Uritu, C. M., Tamba, B. I., Filipiuc, L. E., Tudorancea, I. M., Boca, A. N., Hâncu, M. F., Porumb, V., & Bild, W. (2023). The Skin and Natural Cannabinoids-Topical and Transdermal Applications. Pharmaceuticals (Basel, Switzerland), 16(7), 1049. https://doi.org/10.3390/ph16071049
Galletta, M., Reekie, T. A., Nagalingam, G., Bottomley, A. L., Harry, E. J., Kassiou, M., & Triccas, J. A. (2020). Rapid Antibacterial Activity of Cannabichromenic Acid against Methicillin-Resistant Staphylococcus aureus. Antibiotics (Basel, Switzerland), 9(8), 523. https://doi.org/10.3390/antibiotics9080523
Hilderbrand R. L. (2018). Hemp & Cannabidiol: What is a Medicine?. Missouri medicine, 115(4), 306–309.
Jastrząb, A., Jarocka-Karpowicz, I., & Skrzydlewska, E. (2022). The Origin and Biomedical Relevance of Cannabigerol. International journal of molecular sciences, 23(14), 7929. https://doi.org/10.3390/ijms23147929
Jiang, Z., Jin, S., Fan, X., Cao, K., Liu, Y., Wang, X., Ma, Y., & Xiang, L. (2022). Cannabidiol Inhibits Inflammation Induced by Cutibacterium acnes-Derived Extracellular Vesicles via Activation of CB2 Receptor in Keratinocytes. Journal of inflammation research, 15, 4573–4583. https://doi.org/10.2147/JIR.S374692
Kim, A. L., Yun, Y. J., Choi, H. W., Hong, C. H., Shim, H. J., Lee, J. H., & Kim, Y. C. (2022). Profiling Cannabinoid Contents and Expression Levels of Corresponding Biosynthetic Genes in Commercial Cannabis (Cannabis sativa L.) Cultivars. Plants (Basel, Switzerland), 11(22), 3088. https://doi.org/10.3390/plants11223088
Kosgodage, U. S., Matewele, P., Awamaria, B., Kraev, I., Warde, P., Mastroianni, G., Nunn, A. V., Guy, G. W., Bell, J. D., Inal, J. M., & Lange, S. (2019). Cannabidiol Is a Novel Modulator of Bacterial Membrane Vesicles. Frontiers in cellular and infection microbiology, 9, 324. https://doi.org/10.3389/fcimb.2019.00324
Kurokawa, I., Danby, F. W., Ju, Q., Wang, X., Xiang, L. F., Xia, L., Chen, W., Nagy, I., Picardo, M., Suh, D. H., Ganceviciene, R., Schagen, S., Tsatsou, F., & Zouboulis, C. C. (2009). New developments in our understanding of acne pathogenesis and treatment. Experimental dermatology, 18(10), 821–832. https://doi.org/10.1111/j.1600-0625.2009.00890.x
Mahmud, M. S., Hossain, M. S., Ahmed, A. T. M. F., Islam, M. Z., Sarker, M. E., & Islam, M. R. (2021). Antimicrobial and Antiviral (SARS-CoV-2) Potential of Cannabinoids and Cannabis sativa: A Comprehensive Review. Molecules (Basel, Switzerland), 26(23), 7216. https://doi.org/10.3390/molecules26237216
Mayslich, C., Grange, P. A., & Dupin, N. (2021). Cutibacterium acnes as an Opportunistic Pathogen: An Update of Its Virulence-Associated Factors. Microorganisms, 9(2), 303. https://doi.org/10.3390/microorganisms9020303
Oláh, A., Tóth, B. I., Borbíró, I., Sugawara, K., Szöllõsi, A. G., Czifra, G., Pál, B., Ambrus, L., Kloepper, J., Camera, E., Ludovici, M., Picardo, M., Voets, T., Zouboulis, C. C., Paus, R., & Bíró, T. (2014). Cannabidiol exerts sebostatic and antiinflammatory effects on human sebocytes. The Journal of clinical investigation, 124(9), 3713–3724. https://doi.org/10.1172/JCI64628
Peyravian, N., Deo, S., Daunert, S., & Jimenez, J. J. (2022). The Anti-Inflammatory Effects of Cannabidiol (CBD) on Acne. Journal of inflammation research, 15, 2795–2801. https://doi.org/10.2147/JIR.S355489
Sandulovici, R. C., Gălăţanu, M. L., Cima, L. M., Panus, E., Truţă, E., Mihăilescu, C. M., Sârbu, I., Cord, D., Rîmbu, M. C., Anghelache, Ş. A., & Panţuroiu, M. (2024). Phytochemical Characterization, Antioxidant, and Antimicrobial Activity of the Vegetative Buds from Romanian Spruce, Picea abies (L.) H. Karst. Molecules (Basel, Switzerland), 29(9), 2128. https://doi.org/10.3390/molecules29092128
Scott, C., Neira Agonh, D., & Lehmann, C. (2022). Antibacterial Effects of Phytocannabinoids. Life (Basel, Switzerland), 12(9), 1394. https://doi.org/10.3390/life12091394
Sionov, R. V., & Steinberg, D. (2022). Anti-Microbial Activity of Phytocannabinoids and Endocannabinoids in the Light of Their Physiological and Pathophysiological Roles. Biomedicines, 10(3), 631. https://doi.org/10.3390/biomedicines10030631
Spittaels, K. J., Ongena, R., Zouboulis, C. C., Crabbé, A., & Coenye, T. (2020). Cutibacterium acnes Phylotype I and II Strains Interact Differently With Human Skin Cells. Frontiers in cellular and infection microbiology, 10, 575164.https://doi.org/10.3389/fcimb.2020.575164
Stasiłowicz, A., Tomala, A., Podolak, I., & Cielecka-Piontek, J. (2021). Cannabis sativa L. as a Natural Drug Meeting the Criteria of a Multitarget Approach to Treatment. International journal of molecular sciences, 22(2), 778. https://doi.org/10.3390/ijms22020778
Stasiłowicz-Krzemień, A., Szymanowska, D., Szulc, P., & Cielecka-Piontek, J. (2024). Antimicrobial, Probiotic, and Immunomodulatory Potential of Cannabis sativa Extract and Delivery Systems. Antibiotics (Basel, Switzerland), 13(4), 369. https://doi.org/10.3390/antibiotics13040369
Tagen, M., & Klumpers, L. E. (2022). Review of delta-8-tetrahydrocannabinol (Δ8 -THC): Comparative pharmacology with Δ9 -THC. British journal of pharmacology, 179(15), 3915–3933. https://doi.org/10.1111/bph.15865
Tahir, M. N., Shahbazi, F., Rondeau-Gagné, S., & Trant, J. F. (2021). The biosynthesis of the cannabinoids. Journal of cannabis research, 3(1), 7. https://doi.org/10.1186/s42238-021-00062-4
Thiboutot, D., Gollnick, H., Bettoli, V., Dréno, B., Kang, S., Leyden, J. J., Shalita, A. R., Lozada, V. T., Berson, D., Finlay, A., Goh, C. L., Herane, M. I., Kaminsky, A., Kubba, R., Layton, A., Miyachi, Y., Perez, M., Martin, J. P., Ramos-E-Silva, M., See, J. A., … Global Alliance to Improve Outcomes in Acne (2009). New insights into the management of acne: an update from the Global Alliance to Improve Outcomes in Acne group. Journal of the American Academy of Dermatology, 60(5 Suppl), S1–S50. https://doi.org/10.1016/j.jaad.2009.01.019
Tóth, K. F., Ádám, D., Bíró, T., & Oláh, A. (2019). Cannabinoid Signaling in the Skin: Therapeutic Potential of the "C(ut)annabinoid" System. Molecules (Basel, Switzerland), 24(5), 918. https://doi.org/10.3390/molecules24050918
Van Klingeren, B., & Ten Ham, M. (1976). Antibacterial activity of delta9-tetrahydrocannabinol and cannabidiol. Antonie van Leeuwenhoek, 42(1-2), 9–12. https://doi.org/10.1007/BF00399444
Yoo, E. H., & Lee, J. H. (2023). Cannabinoids and Their Receptors in Skin Diseases. International journal of molecular sciences, 24(22), 16523. https://doi.org/10.3390/ijms242216523
Zouboulis C. C. (2004). Acne and sebaceous gland function. Clinics in dermatology, 22(5), 360–366. https://doi.org/10.1016/j.clindermatol.2004.03.004