Acetylcholinesterase Inhibition and Antioxidant Activities of the Ethanolic Extract of Ya Hom Thip Osot Polyherbal Formula and Its Constituents
Main Article Content
Abstract
This study aimed to investigate the acetylcholinesterase (AChE) inhibitory activity and antioxidant properties of the Ya Hom Thip Osot formulation, both in self-prepared samples and those commercially available, as well as ethanol extracts from 46 individual medicinal plants contained in the formula. The results showed that ethanol extracts of both the self-prepared and the commercial Ya Hom exhibited comparable AChE inhibitory activity (37.63 ± 1.93% and 35.87 ± 1.56%, respectively), with no statistically significant difference (p > 0.05). However, their activities were significantly lower than the standard compound Galantamine (94.48 ± 0.26%). Among the individual plant extracts tested, Terminalia chebula Retz. (known in Thai as “Kot Phung Pla”) demonstrated the strongest AChE inhibitory effect (85.99 ± 1.16%). For antioxidant activity evaluated using the DPPH assay, ethanol extracts of the two Ya Hom samples showed EC50 values of 3.55 ± 0.55 and 3.93 ± 1.73 µg/mL, respectively, with no significant difference between them. However, both exhibited significantly lower activity compared to the standard antioxidants L-ascorbic acid and quercetin (p > 0.05). In contrast, Terminalia chebula exhibited remarkably strong antioxidant activity, with an EC50 value of 0.78 ± 0.73 µg/mL, which was significantly more potent than both reference standards. In conclusion, Ya Hom Thip Osot possessed potential AChE inhibitory and antioxidant activities, although its efficacy was lower than standard compounds. Notably, certain individual herbs, particularly Terminalia chebula, demonstrated high activity and showed promise for further development into future health products.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
กรมการแพทย์แผนไทยและการแพทย์ทางเลือก. (2562). รายชื่อยาสมุนไพรในบัญชียาหลักแห่งชาติ พ.ศ. 2562 (บัญชียา ก). นนทบุรี: กรมการแพทย์แผนไทยและการแพทย์ทางเลือก, กระทรวงสาธารณสุข.
มูลนิธิฟื้นฟูส่งเสริมการแพทย์แผนไทยเดิมฯ. (2559). ตำราเภสัชกรรมไทย. พิมพ์ครั้งที่ 2. กรุงเทพฯ : โรงพิมพ์พิมพลักษณ์กรุงเทพฯ : โรงเรียนอายุรเวท (ชีวโกมารภัจจ์) มูลนิธิฟื้นฟูส่งเสริมการแพทย์แผนไทยเดิมฯ.
Apel, K. and Hirt, H. (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology 55(1): 373 - 399. doi: 10.1146/annurev.arplant.55.031903.141701.
Boonyuenyong, K., Chaiyawatthanananthn, P., Intarawan, T., Houngiam, K. and Ngankogsoong, Y. (2023). Effects of ethanol and aqueous extracts of Terminalia chebula, Cyperus rotundus, Tinospora crispa and the combined remedy on anti-oxidant activities and capacities. Asian Medical Journal and Alternative Medicine 23(2): 102 - 109.
Chen, Z.R., Huang, J.B., Yang, S.L. and Hong, F.F. (2022). Role of cholinergic signaling in Alzheimer's disease. Molecules 27(6): 1816. doi: 10.3390/molecules27061816.
Dhingra, D., Parle, M. and Kulkarni, S.K. (2006). Comparative Brain Cholinesterase-Inhibiting Activity of Glycyrrhiza glabrata, Myristica fragrans, Ascorbic Acid, and Metrifonate in Mice. Journal of Medicinal Food 9: 281 - 283.
Dos Santos, T.C., Gomes, T.M., Pinto, B.A.S., Camara, A.L. and Paes, A.M.A. (2018). Naturally occurring acetylcholinesterase inhibitors and their potential use for Alzheimer’s disease therapy. Frontiers in Pharmacology 9: 1192. doi: 10.3389/fphar.2018.01192
Ferreira-Vieira, T.H., Guimaraes, I.M., Silva, F.R. and Ribeiro, F.M. (2016). Alzheimer's disease: targeting the cholinergic system. Current Neuropharmacology 14(1): 101 - 115. doi: 10.2174/1570159X136661507 16165726.
Francis, P.T., Palmer, A.M., Snape, M. and Wilcock, G.K. (1999). The cholinergic hypothesis of Alzheimer’s disease: a review of progress. Journal of Neurology. Neurosurgery & Psychiatry 66(2): 137 - 147. doi: 10.1136/jnnp.66.2.137.
Gali, L. and Bedjou, F. (2019). Antioxidant and anticholinesterase effects of the ethanol extract, ethanol extract fractions and total alkaloids from the cultivated Ruta chalepensis. South African Journal of Botany 120: 163 - 169. doi: 10.1016/j.sajb.2018.04.011.
Ghosh, R., Banerjee, S. and Chatterjee, A. (2023). Pharmacological properties and bioactive constituents of Terminalia chebula: A comprehensive review. Frontiers in Pharmacology 14: 1134572. doi: 10.338 9/fphar.2023.1134572.
Gulcin, İ. and Alwasel, S.H. (2023). DPPH Radical Scavenging Assay. Processes 11(8): 2248. doi: 10.3390 /pr11082248
Hampel, H., Mesulam, M.M., Cuello, A.C., Farlow, M.R., Giacobini, E. and Grossberg, G.T. (2018). The cholinergic system in the pathophysiology and treatment of Alzheimer's disease. Brain 141(7):
- 1933. doi: 10.1093/brain/awy132.
Ingkaninan, K., Temkitthawon, P., Chuenchom, K., Yuyaem, T. and Thongnoi, W. (2003). Screening for acetylcholinesterase inhibitory activity in plants used in Thai traditional rejuvenating and neurotonic remedies. Journal of Ethnopharmacology 89(2–3): 261 - 264. doi: 10.1016/j.jep.2003.08.008.
Jeong, G.S., Kang, M.G., Lee, J.Y., Lee, S.R., Park, D., Cho, M. and Kim, H. (2020). Inhibition of butyrylcholinesterase and human monoamine oxidase-B by the coumarin glycyrol and liquiritigenin isolated from Glycyrrhiza uralensis. Molecules 25(17): 3896. doi: 10.3390/molecules25173896.
Kumar, A., Singh, A. and Ekavali. (2015). A review on Alzheimer’s disease pathophysiology and its management: an update. Pharmacological Reports 67(2): 195 - 203. doi: 10.1016/j.pharep.2014.09.004
Lobo, V., Patil, A., Phatak, A. and Chandra, N. (2010). Free radicals, antioxidants and functional foods: Impact on human health. Pharmacognosy Reviews 4(8): 118 - 126. doi: 10.4103/0973-7847.70902
Olazarán, J. and García, G. (2002). Galantamine: A novel cholinergic agent for Alzheimer's disease. Neurologia 17(8): 429 - 436.
Orhan, I., Kartal, M., Naz, Q., Ejaz, A., Yilmaz, G., Kan, Y. and Choudhary, M.I. (2007). Antioxidant and anticholinesterase evaluation of selected Turkish Salvia species. Food Chemistry 103: 1247 - 1254. doi: 10.1016/j.foodchem.2006.10.030.
Noridayu, A.R., Hii, Y.F., Faridah, A., Khozirah, S. and Lajis, N. (2011). Antioxidant and antiacetylcholinesterase activities of Pluchea indica Less. International Food Research Journal 18(3): 925 - 929.
Perry, E.K., Pickering, A.T., Wang, W.W., Houghton, P.J. and Perry, N.S. (1999). Medicinal plants and Alzheimer’s disease: from ethnobotany to phytotherapy. Journal of Pharmacy and Pharmacology 51(5): 527 - 534. doi: 10.1211/0022357991772808.
Premkaisorn, P. (2010). Evaluation of Antioxidant Activity of Eleven Thai Medicinal Herbs. SWU Science Journal 26(1): 30 - 37.
Puthongking, P., Ratha, J., Panyatip, P., Datham, S., Siriparu, P. and Yongram, C. (2023). The effect of extraction solvent on the phytochemical contents and antioxidant and acetylcholinesterase inhibitory activities of extracts from the leaves, bark and twig of Dipterocarpus alatus. Tropical Journal of Natural Product Research 7(12): 5595 - 5604. doi: 10.26538/tjnpr/v7i12.32.
Rice-Evans, C.A., Miller, N.J. and Paganga, G. (1997). Antioxidant properties of phenolic compounds. Trends in Plant Science 2(4): 152 - 159. doi: 10.1016/S1360-1385(97)01018-2.
Stanciu, G.D., Luca, A., Rusu, R.N., Bild, V., Beschea Chiriac, S.I., Solcan, C., Bild, W. and Ababei, D.C. (2020). Alzheimer’s Disease Pharmacotherapy in Relation to Cholinergic System Involvement. Biomolecules 10(1): 40. doi: 10.3390/biom10010040.
Thoobbucha, N. and Petchler, C. (2015). Free radical scavenging capacity and modulative effect on antioxidant enzyme activity of Pluchea indica Less. tea leaf extract. Health Science and Technology Review 8(2): 74 - 79.