Species Diversity and Some Ecological Aspects of Chironomus Bloodworm (Order Diptera, Family Chironomidae) in Khon Kaen University during Dry Season

Main Article Content

Patipat Tevapawat
Sirikamon Phlai-ngam
Nisarat Tungpairojwong

Abstract

The research conducted at Khon Kaen University investigated the ecological aspects and species diversity of the chironomid bloodworm genus Chironomus (Order Diptera, Family Chironomidae). The chironomid larvae were collected from two sampling sites (the waterspout near the Faculty of Education [S1] and the wastewater treatment ponds [S2]) from January to March 2024 using a D-framed dip net with a mesh size of 450 micrometers and the hand-picking method. The physicochemical parameters of water were measured. There were statistically significant differences in the average values of the water parameters between the two sampling sites (p < 0.05). Additionally, the water parameters of the microhabitats were significantly different (p < 0.05). These parameters included pool [MH1] and flowing water [MH2] (located in S1), aquatic plant [MH3], and riverbank [MH4] (located in S2). Based on the association method, three species of bloodworms were found at Khon Kaen University: C. flaviplumus Type B, C. javanus, and C. kiiensis. Adult morphology can be distinguished based on male genitalia (hypopygium) and female antennae, although larval morphology differs in mouthparts and posterior anal tubes. The ecological study showed that Chironomus larvae commonly build their nests in mud, small rocks, and aquatic plants. They were observed in both still and flowing waterways, with multiple species coexisting in the same microhabitat. Comparing the density of Chironomus between study areas, it was found that S2 has a higher density (83.65%) compared to S1. The high density of bloodworms (54.76%) was observed in MH3, while MH4 (28.89%) and MH1 (8.99%) were the next most abundant. All sampling sites have a range of particle sizes, including very coarse sand, coarse sand, medium sand, fine sand, very fine sand, and silt, according to the analysis of the different types of sediment particles. Silt is the most commonly found particle type identified as being utilized in bloodworm nests.

Article Details

How to Cite
Tevapawat, P., Phlai-ngam, S., & Tungpairojwong, N. (2024). Species Diversity and Some Ecological Aspects of Chironomus Bloodworm (Order Diptera, Family Chironomidae) in Khon Kaen University during Dry Season. KKU Science Journal, 52(2), 199–218. Retrieved from https://ph01.tci-thaijo.org/index.php/KKUSciJ/article/view/256435
Section
Research Articles
Author Biographies

Sirikamon Phlai-ngam, Applied Taxonomic Research Center, Faculty of Science, Khon Kaen University, Thailand

Department of Biology, Faculty of Science, Burapha University, Thailand

Nisarat Tungpairojwong, Department of Biology, Faculty of Science, Khon Kaen University, Thailand

Applied Taxonomic Research Center, Faculty of Science, Khon Kaen University, Thailand

References

กรมประมง กระทรวงเกษตรและสหกรณ์. (2530). เกณฑ์คุณภาพน้ำเพื่อการคุ้มครองทรัพยากรน้ำจืด. เอกสารวิชาการฉบับที่ 75/2530. กรุงเทพฯ: สถาบันประมงน้ำจืดแห่งชาติ. 1 - 38.

สำรวย เสร็จกิจ. (2533). การผลิตหนอนแดงในบ่อซีเมนต์. เคหการเกษตร 19(5): 81 - 84.

อีสานคอนกรีต. (2020). ประเภททรายในงานก่อสร้าง มีอะไรบ้าง. แหล่งข้อมูล: https://www.kacha.co.th/articles/. ค้นเมื่อวันที่ 26 พฤษภาคม 2567.

Ahmad, A.K., Aziz, Z.A. and Shuhaimi-Othman, M. (2014). Chironomid spatial distribution within the upstream of Sungai Lang at catchment. Sains Malay-siana 43(11): 1657 - 1663.

Al-Shami, S.A., Rawi, C.S., Ahmad, A.H. and Nor, S.A. (2010). Distribution of Chironomidae (Insecta: Diptera) in polluted rivers of the Juru River Basin, Penang, Malaysia. Journal of Environmental Sciences 22(11): 1718 - 1727. doi: 10.1016/S1001-0742(09)60311-9.

Al-Shami, S.A., Rawi, C.S., Ahmad, A.H. and Nor, S.A. (2012). Redescription of Chironomus javanus and Chironomus kiiensis (Diptera: Chironomidae) Larvae and Adults Collected from a Rice Field in Pulau Pinang, Malaysia. Tropical Life Sciences Research 23(1): 77 - 86.

Bird, G.A. (1997). Deformities in Cultured Chironomus tentans larvae and The Influence of Substrate on Growth, Survival and Mentum Wear. Environmental Monitoring and Assessment 45: 273 - 283.

Bo, T., Fenoglio, S., López-Rodríguez, M. and de Figueroa, J.T. (2012). Trophic behaviour of the dragonfly Cordulegaster boltoni; (Insecta: Odonata) in small creeks in NW Italy. Entomologica Fennica 22(4): 255 - 261.

Borror, J.D. and DeLong, D.M. (1964). An Introduction to the Study of Insects. USA: Holt Rinehart and Winston, Inc. 1 - 875.

Burmester, T. and Hankeln, T. (2007). The respiratory proteins of insects. Journal of Insect Physiology 53(4): 285 - 294.

Chaudhuri, P.K., Das, S.K. and Sublette, J.E. (1992). Indian species of the genus Chironomus Meigen (Diptera; Chironomidae). Zoologische Jahrbücher, Abteilung für Systematik, Ökologie und Geographie der Tiere 119: 1 - 51.

Cheshmedjiev, S., Soufi, R., Vidinova, Y, Tyufekchieva, V., Yaneva, I., Uzunov, Y. and Varadinova, E. (2011). Multi-habitat sampling method for benthic macroinvertebrate communities in different river types in Bulgaria. Water Research and Management 1(3): 55 - 58.

Cranston, P.S. (1995a). Introduction. In: Armitage, P.D., Cranston, P.S. and Pinder, L.C.V. (eds.) The Chironomidae: Biology and Ecology of Non-biting Midges. London: Chapman & Hall UK: Springer Science Business Media. 1 - 5.

Cranston, P.S. (1995b). Biogeography. In: Armitage, P.D., Cranston, P.S. and Pinder, L.C.V. (eds.) The Chironomidae: Biology and Ecology of Non-biting Midges. London: Chapman & Hall UK: Springer Science Business Media. 62 - 82.

Cranston, P.S. (2007). The chironomidae larvae associated with the Tsunami-impacted waterbodies of the coastal plain of Southwestern Thailand. The Raffles Bulletin of Zoology 55(2): 231 - 244.

Ferrington, L.C., Coffman, W.P. and Berg, M.B. (2008). Chironomidae. In: Merritt, R.W., Cummins, K.W. and M.B. Berg (eds) An introduction to the aquatic insects of North America. USA: Kendall and Hunt. 847 -.989.

Konstantinov, A.S. (1971). Ecological factors affecting respiration in chironomid larvae. Limnologica (Berlin) 8: 127 - 34. In: Armitage, P.D., Cranston, P.S. and Pinder, L.C.V. (1995). THE CHIRONOMIDAE: Biology and Ecology of non-biting midge. London: Chapman & Hall UK. Springer Science& Business Media.

Kumar, D. (2016). Chironomus larvae culture – A boon to Aquaculture sector. International Journal of Current Science Research 2(1): 239 - 251.

Kuvangkadilok, C. (1994). Laboratory Studies on The Life Cycle and Breeding of The Midges Chironomus Plumaisetigerus (Diptera: Chironomidae). ScienceAsia 20: 125 - 133.

Martin, J. (2020). Morphology and Cytology of Oriental Chironomus species. Source: http://www.chironomidae.net/Martin/Aust Chironfiles/-AustChironomusv0220.pdf. Retrieved from 24 February 2020.

Martin, J. (2022). The Chironomus species studied by Letha Karunakaran in Singapore, with a review of the status of selected South-East Asian Chironomus. CHIRONOMUS Journal of Chironomidae Research 35: 44 - 49.

Merritt, R.W., Cummins, K.W. and Berg, M.B. (2008). An Introduction to the aquatic insects of North America. (4th ed). Lowa: Kendall/Hunt Publishers. 1 - 1498.

Nath, B.B., Neelam R. and Raut N. (1998). Behavioural studies on tube recognition ability of Chironomus larvae. Indian Journal of Experimental Biology 36 (8): 826 - 828.

Peng, J., Kumar, K., Gross, M., Kunetz, T. and Wen, Z. (2019). Removal of total dissolved solids from wastewater using a revolving algal biofilm reactor. Water Environment Research 92: 766 - 778. doi: 10.1002/wer.1273.

Pinder, L.C.V. (1986). Biology of Freshwater Chironomidae. Annual Review of Entomology. 31: 1-23.

Pinder, L.C.V. (1995). Biology of the eggs and first-instar larvae. In: Armitage, P.D., Cranston, P.S. and Pinder, L.C.V. (eds.) The Chironomidae: Biology and Ecology of Non-biting Midges. London: Chapman & Hall UK: Springer Science Business Media. 87 - 106.

Podder R., Nath, S, Modak, B.K., Weltje, L. and Malakar, B. (2022). Tube length of chironomid larvae as an indicator for dissolved oxygen in water bodies. Scientific Reports. 12: 19971. doi: 10.1038/s41598-022-23953-9.

Pramual, P., Simwisat, K. and Martin, J. (2016). Identification and reassessment of the specific status of some tropical freshwater midges (Diptera: Chironomidae) using DNA barcode data. Zootaxa 4072(1): 39 - 60. doi: 10.11646/zootaxa.4072.1.2.

Pronina, A.V., Syrykh, L.S. and Grekov, I. (2022). Gran-size and chironomid analyses of the upper sediment core of Lake Usvyatskoye (Pskov region, Russia). Limnology and Freshwater Biology (4):1529 - 1531. doi: 10.31951/2658-3518-2022-A-4-1529.

Shmakova, M. (2022). Sediment Transport in River Flows: New Approaches and Formulas. In: Pasquali, D. (ed.) Modeling of Sediment Transport. IntechOpen. 1 - 22. doi: 10.5772/intechopen.103942.

Simwisat, K., Uttaruk, P. and Pramual, P. (2015). Morphology, Cytogenetics and DNA barcode of the Chironomidae (Diptera) in Thailand. Journal of Science and Technology Mahasarakham University 34(1): 74 - 85.

Soil Survey Division Staff. (1993). Soil survey manual. Soil Conservation Service. U.S.: Department of Agriculture Handbook 18.

Sokolova, N.Y., Paliy, A.V. and Izvekova, B.I. (1992). Biology of Chironomus piger Str. (Diptera: Chironomidae) and its role in the self-purification of a river. Netherlands Journal of Aquatic Ecology 26: 509 – 512. doi: 10.1007/BF02255283.

Somparn, A., Iwai, B.C. and Noller, B.N. (2017). Assessment of pesticide contaminated sediment using biological response of tropical chironomid, Chironomus javanus Kiffer as biomarker. Asian Pacific Journal of Tropical Biomedicine 7(8): 719-724. doi: 10.1016/j.apjtb.2017.07.014.

Sriariyanuwath, E., Sangpradub, N. and Hanjavanit, C. (2015). Diversity of chironomid larvae in relation to water quality in the Phong River, Thailand. Aquaculture, Aquarium, Conservation & Legislation International Journal of the Bioflux Society 8(6): 933 - 945.

Suhada, Q.A.R. and Syamsudin, T.S. (2014). Chironomid Larvae Uses Combination of Yeast and Microalgae. In: Proceeding of International Conference of Aquaculture Indonesia. Indonesian Aquaculture Society, Surabaya, Indonesia. 233 - 238.

Tupinambás, T.H., Pompeu, P.S., Gandini, C.V., Huges, R.M. and Callisto, M. (2015). Fish stomach contents in benthic macroinvertebrate assemblage assessments. Brazillian journal of biology 75(1): 157 - 164. doi: 10.1590/1519-6984.09913.

Vos, J.H., Teunissen, M., Postma, J.F. and van den Ende, F.P. (2002). Particle size effect on preferential settlement and growth rate of detritovorous chironomid larvae as influenced by food level. Archiv für Hydrobiologie 154(1): 103 - 119.

Zupo, V., Lumare, F., and Bisignano, V. (2016). Comparative Study of the Gut Contents of Penaeus japonicus Bate 1888 (Decapoda: Penaeidae) In Semi-Intensive Culture and In Brackish Water Wild Environment. Journal of Aquaculture and Marine Biology 4(6): 1 - 9. doi: 10.15406/jamb.2016.04.00100.