On the Diophantine Equation a^x+(a+2)^y=z^2

Main Article Content

Suton Tadee

Abstract

In this paper, we investigated the solutions of the Diophantine equation gif.latex?a^{x}+(a+2)^{y}=z^{2}, where gif.latex?a is a positive integer and gif.latex?x,y,z are non-negative integers. Let gif.latex?S be the set of non-negative integer solutions gif.latex?(x,y,z) of the equation. The results showed that 1) if gif.latex?a is a prime number with gif.latex?a\equiv&space;5\left&space;(&space;mod8&space;\right&space;), then gif.latex?S&space;\equiv&space;\left&space;\{&space;(0,1,\sqrt{a+3})&space;\right&space;\}, where gif.latex?\sqrt{a+3} is an integer, otherwise gif.latex?S=\phi.  2) If gif.latex?a+2 is a prime number and gif.latex?x is even and the equation has a solution, then gif.latex?y=1 and gif.latex?z=2.  3) Let gif.latex?p be a prime number such that gif.latex?p\equiv&space;5,7(mod8) and gif.latex?a\equiv&space;-2(modp). Then gif.latex?S=\left&space;\{&space;(1,0,\sqrt{a+1})&space;\right&space;\}, where gif.latex?\sqrt{a+1} is an integer, otherwise gif.latex?S=\phi, when it satisfies one of the following cases: case 1 gif.latex?a\equiv&space;3\left&space;(&space;mod4&space;\right&space;) or case 2 there exists a prime number gif.latex?q such that gif.latex?q\equiv&space;3,5(mod8) and gif.latex?a\equiv&space;-1\left&space;(&space;modq&space;\right&space;).

Article Details

How to Cite
Tadee, S. (2024). On the Diophantine Equation a^x+(a+2)^y=z^2. KKU Science Journal, 52(1), 39–46. https://doi.org/10.14456/kkuscij.2024.4
Section
Research Articles

References

Dokchann, R. and Pakapongpun, A. (2020). On the Diophantine equation a^x + (a+2)^y = z^2, where a≡5(mod 42). Tatra Mountains Mathematical Publications 77: 39 – 42. doi: 10.2478/tmmp-2020-0030.

Gupta, S., Kumar, R. and Kumar, S. (2020). On the non-linear Diophantine equation p^x + (p+2)^y = z^2. Ilkogretim Online – Elementary Education Online 19(1): 472 – 475. doi: 10.17051/ilkonline.2020.661876.

Karaivanov, B. and Vassilev, T.S. (2016). On certain sums involving the Legendre symbol. Integers. 16:1 - 10.

Mihăilescu, P. (2004). Primary cyclotomic units and a proof of Catalan’s conjecture. Journal für die Reine und Angewandte Mathematik 572: 167 - 195.

Pakapongpun, A. and Chattae, B. (2022). On the Diophantine equation a^x + (a+2)^y = z^2, where a≡3(mod 20). International Journal of Mathematics and Computer Science 17(2): 711 - 716.

Pandichelvi, V. and Vanaja, R. (2022). Inspecting integer solutions for an exponential Diophantine equation p^x + (p+2)^y = z^2. Advances and Applications in Mathematical Sciences 21(8): 4693 - 4701.

Rabago, J.F.T. (2013). A note on two Diophantine equations 17^x + 19^y = z^2 and 71^x + 73 ^y = z^2. Mathematical Journal of Interdisciplinary Sciences 2(1): 19 – 24. doi: 10.15415/mjis.2013.21002.

Sroysang, B. (2012). On the Diophantine equation 3^x + 5^y = z^2. International Journal of Pure and Applied Mathematics 81(4): 605 - 608.

Sroysang, B. (2013a). On the Diophantine equation 5^x + 7^y = z^2. International Journal of Pure and Applied Mathematics 89(1): 115 - 118. doi: 10.12732/ijpam.v89i1.14.

Sroysang, B. (2013b). On the Diophantine equation 47^x + 49 ^y = z^2. International Journal of Pure and Applied Mathematics 89(2): 279 – 282. doi: 10.12732/ijpam.v89i2.11.

Sroysang, B. (2013c). On the Diophantine equation 89^x + 91^y = z^2. International Journal of Pure and Applied Mathematics 89(2): 283 - 286. doi: 10.12732/ijpam.v89i2.12.

Sroysang, B. (2014). On the Diophantine equation 143^x + 145^y = z^2. International Journal of Pure and Applied Mathematics 91(2): 265 - 268. doi: 10.12732/ijpam.v91i2.13.

Sugandha, A., Tripena, A., Prabowo, A. and Sukono, F. (2018). Nonlinear Diophantine equation 11^x + 13^y = z^2. IOP Conf. Series: Materials Science and Engineering 332: 1 - 4. doi: 10.1088/1757-899X/332/1/012004.

Viriyapong, C. and Viriyapong, N. (2023). On the Diophantine equation a^x + (a+2)^y = z^2, where a≡5(mod 21). International Journal of Mathematics and Computer Science 18(3): 525 - 527.

Viriyapong, C. and Viriyapong, N. (2024). On the Diophantine equation a^x + (a+2)^y = z^2, where a is congruent to 19 modulo 28. International Journal of Mathematics and Computer Science 19(2): 449 - 451.