Equilibrium Solution on a Two-dimensional Piecewise Linear Map

Main Article Content

Siriyakorn krisuk
Kanlaya Soprom
Jutarat Pantain
Wirot Tikjha

Abstract

In this paper we study a behavior of a piecewise linear map with specific initial condition in the second quadrant. We show that there is a unique equilibrium point of the map. We found regions of initial conditions that solutions become an equilibrium point. We separate the region into sub-regions and investigate behaviors of solutions in each sub-region by direct calculations. We use inductive statements to assert that solutions of the map in each region of initial conditions are an eventually equilibrium point without using stability theorem.

Article Details

How to Cite
krisuk, S., Soprom, K. ., Pantain, J. ., & Tikjha, W. . (2023). Equilibrium Solution on a Two-dimensional Piecewise Linear Map. KKU Science Journal, 50(3), 223–230. Retrieved from https://ph01.tci-thaijo.org/index.php/KKUSciJ/article/view/251510
Section
Research Articles

References

Grove, E.A. and Ladas, G. (2005). Periodicities in Nonlinear Difference Equations, New York: Chapman Hall.

Grove, E.A., Lapierre, E. and Tikjha, W. (2012). On the Global Behavior of and . Cubo Mathematical Journal 14(2): 125–166.

Krinket, S. and Tikjha, W. (2015). Prime period solution of cartain piecewise linear system of difference equation. Pibulsongkram Research. 76-83. (in press)

Lozi, R. (1978). Un attracteur étrange du type attracteur de Hénon. Journal de. Physique Colloques 39(C5): 9-10.

Simpson, D.J.W. (2010). Bifurcations in piecewise-smooth continuous systems. World Scientific Publishing Co. Pte. Ltd. Singapore.

Simpson, D.J.W. (2014a). Sequences of Periodic Solutions and Infinitely Many Coexisting Attractors in the Border-Collision Normal Form. International Journal of Bifurcation and Chaos 24(6): 1430018.

Simpson, D.J.W. (2014b). Scaling Laws for Large Numbers of Coexisting Attracting Periodic Solutions in the Border-Collision Normal Form. International Journal of Bifurcation and Chaos 24(9): 1450118.

Tikjha, W. and Lapierre, E. (2020). Periodic solutions of a system of piecewise linear difference equations. Kyungpook Mathematical Journal 60(2): 401-413.

Tikjha, W., Lapierre, E.G. and Sitthiwirattham T. (2017). The stable equilibrium of a system of piecewise linear difference equations. Advances in Difference Equations 67. doi:10.1186/s13662-017-1117-2.

Tikjha, W., Lenbury, Y. and Lapierre, E.G. (2010). On the Global Character of the System of Piecewise Linear Difference Equations and . Advances in Difference Equations 573281. doi:10.1155/2010/573281.

Tikjha, W., Lapierre, E.G. and Lenbury, Y. (2015). Periodic solutions of a generalized system of piecewise linear difference equations. Advances in Difference Equations 2015:248. doi:10.1186/s13662-015-0585-5.

Tikjha, W., and Piasu, K. (2020). A necessary condition for eventually equilibrium or periodic to a system of difference equations. Journal of Computational Analysis and Applications 28(2): 254-261.

Zhusubaliyev, Z.T., Mosekilde, E. and Banerjee S. (2008). Multiple-attractor bifurcations and quasiperiodicity in piecewise-smooth maps. International Journal of Bifurcation and Chaos 18(6): 1775-1789.