Functional Equations with Trigonometric Function Solutions

Main Article Content

จรินทร์ทิพย์ เฮงคราวิทย์

Abstract

This article aims to treat the problem of characterizing the trigonometric sine and cosine function. Our method arises from Kannappan’s work of 2003 which solved the functional equation gif.latex?f(x-y)&space;=&space;f(x)f(y)&space;+&space;g(x)g(y) for functions whose domain is a group and whose range is a subset of the complex field without any additional conditions. We use Kannappan’s technique to determine the general solutions of the functional equation gif.latex?f(x+y)&space;=&space;f(x)f(y)&space;-&space;g(x)g(y) which, together with Kannappan’s result, give a complete characterization of the trigonometric sine and cosine functions.

Article Details

How to Cite
เฮงคราวิทย์ จ. . (2013). Functional Equations with Trigonometric Function Solutions. KKU Science Journal, 41(3), 671–678. Retrieved from https://ph01.tci-thaijo.org/index.php/KKUSciJ/article/view/249162
Section
Review Articles