Microstructure and Elemental Composition of Activated Carbon from Corncobs

Authors

  • Yotin Kallayalert -

Keywords:

Activated carbon, Biochar, Microstructure, Elemental composition

Abstract

This research studied the microstructure and elemental composition of activated carbon from corncobs derived from pyrolysis burning at temperatures ranging from 400 to 600 degrees Celsius in a 200-liter incinerator, producing biochar as a result. After that, the biochar was submerged in residual pulp-making water produced from sugar cane leaves. The immersion solution contained sodium hydroxide (NaOH) with a pH of 13 and was maintained for a duration of 24 hours. Afterwards, the charcoal was rinsed with water until it obtained a pH of 7, and then it was dried using hot air at a temperature of 70 degrees Celsius for 24 hours. The dried charcoal was then calcined via pyrolysis process at 700 degrees Celsius for 1 hour. The crystal structures, microstructure and elemental composition of the activated carbon were determined using X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) respectively. Moreover, the surface area was measured using the Brunauer-Emmett-Teller (BET) technique. The XRD result revealed the existence of amorphous carbon phase, as well as graphite with a rhombohedral crystal structure. The SEM study showed the microstructure of the corncobs activated carbon, which had pores with sizes ranging from 8 to 10 μm, together with smaller embedded pores within the range of 2 to 5 μm. The EDS result indicated that carbon constituted for 68.86% of the elemental composition, with oxygen at 16.86%. In addition, the surface area investigation demonstrated that the activated carbon had a specific surface area of 722.42 m2/g.

Downloads

References

กิตติชัย โสพันนา และธนากร อุทัยดา. (2552). การปรับปรุงสมบัติของตัวดูดซับโลหะหนักด้วยวัสดุในท้องถิ่น. วารสารมหาวิทยาลัยราชภัฏสกลนคร, 1(1), 181-196.

กิตติพงษ์ ชูจิตร. (2559). การดูซับแคดเมียมโครเมียม และแมงกานีสโดยใช้วัสดุเซลลูโลสจากธรรมชาติ. วารสารวิทยาศาสตร์และเทคโนโลยี มทร. ธัญบุรีม, 6(1), 71-76.

จิราภรณ์ ธรรมศรี. (2545). การผลิตถ่านกัมมันต์จากกะลามะพร้าวโดยใช้โซเดียมคลอไรด์.(รายงานการวิจัย, สาขาวิชาเทคโนโลยีสิ่งแวดล้อม มหาวิทยาลัยมหาสารคาม).

พินิจ จิรัคคกุล, อนุชา เชาว์โชติ และ สิทธิชัย ดาศรี. (2563). การศึกษาระบบการจัดการเปลือก

และซังข้าวโพดเพื่อเป็นพลังงานทดแทน. วารสารวิชาการพลังงานทดแทนสู่ชุมชน, 58-66.

ธัญพิสิษฐ์ พวงจิก. (2558). “ถ่านกัมมันต์จากไม้ไผ่ : ตลาดยังคงมีความต้องการสูง?”. วารสารวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยธรรมศาสตร์, 23(6), 945-954.

ธีรดิตถ์ โพธิตันติมงคล. (2560). ถ่านกัมมันต์จากวัสดุเหลือใช้ทางการเกษตรโดยการกระตุ้นทางเคมีเพื่อการประยุกต์ใช้กําจัดสารมลพิษในนํ้า. วารสารหน่วยวิจัยวิทยาศาสตร์ เทคโนโลยี และสิ่งแวดล้อมเพื่อการเรียนรู้, 8(1), 196-214.

Acharya, J., Sahu, J.N., Mohanty, C.R. and Meikap, B.C. (2009). Removal of lead(II) from wastewater by activated carbon developed from Tamarind wood by zinc chloride activation. Chem. Eng. J., 149, 249-262

Ahmedna, M., Marshall, W.E., & Rao, R.M. (2000). Production of granular activated carbon from select agricultural by product and evaluation of their physical, chemical and adsorption properties. Bio resour Technol, 71, 113-123.

Aworn, A., Thiravetyan, P., & Nakbanpote, W. (2009). Preparation of CO2 activated carbon from corncob for monoethylene glycol adsorption. Colloids and Surfaces A Physicochemical and Engineering Aspects, 333, 19–25.

Christina, C.S., Zaher, H., & Ania,C.U. (2012). Preparation and characterization of activated carbon from oil sands coke. Fuel, 92, 69-76.

Fu, K., Yue, Q., Gao, B., Sun, Y & Zhu, L. (2013). Preparation, characterization and application of lignin-based activated carbon from black liquor lignin by steam activation. Chemical Engineering Journal, 228, 1074-1082.

Hayashi, J. Kazehaya, A. Muroyama, K. and Watkinson, AP. (2000). Preparation of activated carbon from lignin by chemical activation. Carbon, 38(13), 1873-1878.

Jutakridsada, P., Prajaksud, C., Kuboonya-Aruk, L., Theerakulpisut, S & Kamwilaisak, K. (2016). Adsorption characteristics of activated carbon prepared from spent ground coffee. Clean Technologies and Environmental Policy, 18(3), 639-645.

Kalderis, D., Koutoulakis, D., Paraskeva, P., Diamadopoulos, E., Otal, E. del Valle, J.O., & Fernandez-Pereira, C. (2008). Adsorption of polluting substances on activated carbons prepared from rice husk and sugarcane bagasse. Chemical Engineering Journal, 144(1), 42-50.

Kantarli, I.C., & Yanik, J. (2010). Activated carbon from leather shaving wastes and its application in removal of toxic materials. Journal of Materials, 179, 348–356.

Khu Le Van & Thu Thuy Luong Thi. (2014). Activated carbon derived from rice husk by NaOH Activation and its application in supercapacitor. Progress in Natural Science: Materials International, 24, 191–198.

Kumar, A., & Mohan Jena, H. (2015). High surface area microporous activated carbons prepared from Fox nut (euryale ferox) shell by zinc chloride activation. Applied Surface Science, 356, 753-761.

Li, D., Tang, R., Tian, Y., Qiao, Y., & Li, J. (2014). Preparation of highly porousbinderless active carbon monoliths from waste aspen sawdust. BioResources, 9(1), 1246-1254.

Liou, T.H. (2010). Development of meso-porous structure and high adsorption capacity ofbiomass-based activatedcarbon by phosphoric acid and zinc chloride activation. Chem. Eng. J., 158, 129-142.

Liou, T.H., & Wu, S.J. (2009). Characteristics of microporous/mesoporous carbons prepared from rice husk under base-and acid-treated conditions, Journal of Materials, 172, 693-698Ioannidou, O., & Zabaniotou, A. (2007). Agricultural residues as precursors for activated carbon production A review. Re-newable and Sustainable Energy Re-views, 1, 1966–2005.

Li, Z.Q., Lu, C.J., Xia, Z.P., Zhou, Y., & Luo, Z. (2007). X-ray diffraction patterns of graphite and turbostraticcarbon. Carbon, 45, 1686-1695.

Ioannidou, O. and Zabaniotou, A. (2007) Agricultural residues as precursors for activated carbon production: A review. Renew. Sust, Energ. Rev, 11, 1966-2005

Ma, X., & Ouyang, F. (2013). Adsorption properties of biomass-based activatedcarbon prepared with spent coffeegrounds and pomelo skin by phosphoric acid activation. Appl. Surf. Sci. 268, 566-570.

Mopoung, S., Inkum, S. and Anuwetch, L. (2015). Effectof temperatureon micropore of activated carbon from sticky rice straw by H3PO4 activatio. Carbon Sci. Tech, 7(3), 24-29.

Moyo, M., Chikazaza, L., Nyamunda, B.C. and Guyo, U. (2013). Adsorption batch studies on the removal of Pb(II) using maize tassel based activated carbon. J. Chem. Article ID 508934, 8 p.

Prahas, D., Kartika, Y., Indraswati, N., & Ismadji, S. (2008). Activated carbon from jackfruit peel waste by H3PO4 chemical activation: Pore structure and surface chemistry characterization. Chemical Engineering Journal, 140(13), 32-42.

Sayğili, H., Güzel, F., & Önal, Y. (2015). Conversion of grape industrial processing waste to activated carbon sorbent and its performance in cationic and anionic dyes adsorption. Journal of Cleaner Pro-duction, 93, 84–93.

Sun, Y., & Webley, P.A. (2010). Preparation of activated carbons from corncob with large specific surface area by a variety of chemical activators and their application in gas storage. Chemical Engineering Journal, 162, 883–892.

Tong, Y.B., Liu, Q., & Chen, F. (2012). Preparation and characterization of activated carbon from waste ramulus mori, Chemical Engineering Journal, 203, 19-24.

Virginia, H. M., & Adrián, B. P. (2012). Lignocellulosic Precursors used in the Synthesis of Activated Carbon: Characterization Techniques and Applications in the Wastewater Treatment. InTech, 1-21.

Downloads

Published

2024-06-30

Issue

Section

Research Article