Study of Microstructure and Chemical Composition of Biochar from Agricultural Waste for Soil Improving Materials

Authors

  • yotin kallayalert คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยราชภัฎวไลยอลงกรณ์

Keywords:

Biochar, Agricultural waste, Microstructure, Soil improving materials

Abstract

Study Microstructure and Chemical of biochar from agricultural waste such as giant mimosa, pride of barbados and corn cobs to be used as a soil improving materials. The biochars prepared from pyrolysis process at temperature 400-600oC. The biochars were studied morphology by scanning electron microscopy (SEM) and chemical composition by energy dispersive x-ray spectrometer (EDX). It was found that microstructure of biochar from giant mimosa, there are homogeneous pores on the surfaces its diameter about 10-15 micrometers. The pride of barbados biochars have homogeneous pores on the surfaces its diameter about 40-50 micrometers and inside the large pores have small pores about 2-10 micrometers and the corn cobs biochars have homogeneous pores about 10-15 micrometers. The chemical compositions all of biochar are analogous which consist of carbon as a main element and silicon, calcium and potassium as a second element. Potassium in corn cobs and pride of barbados biochars were significant higher than giant mimosa biochars. From these results, it can be predicted that the biochar of the three types of agricultural waste materials has suitable properties for use as soil improving materials. It is because high porosity which may good absorbed water and nutrient.

Downloads

Download data is not yet available.

References

บุญรักษ์ กาญจนวรวณิชย์. (2560). สาระน่ารู้: เถ้าแกลบ ของเหลือสารพัดประโยชน์. สืบค้นจาก https://www.mtec.or.th/academic-services/mtec-knowledge/865

เสาวคนธ์ เหมวงษ์. (2557). ผลของถ่านชีวภาพจากไม้ไผ่และแกลบต่อผลผลิต และประสิทธิภาพการดูดใช้ไนโตรเจน ของข้าวพันธุ์ชัยนาท 1. วารสารวิทยาศาสตร์และเทคโนโลยีมหาวิทยาลัยอุบลราชธานี, 16(1): 69-75.

อัญชลี นิลสุวรรณ และลดา มัทธุรศ. ผลของวัสดุปลูกชนิดแกลบที่ปรับปรุงการดูดซับไนเตรตด้วยสารลด

แรงตึงผิวต่อการเจริญเติบโตของมะเขือเทศ. การประชุมวิชาการระดับชาติวลัยลักษณ์วิจัย ครั้งที่ 11 วันที่ 27-28 มีนาคม 2562 (หน้า 1-9). นครศรีธรรมราช.

องค์ความรู้ถ่านชีวภาพ. (2557). ถ่านชีวภาพ. เพชรบุรี: ศูนย์ศึกษาการพัฒนาห้วยทรายอันเนื่องมาจากพระราชดำริ

อรสา สุกสว่าง. (2561). ประโยชน์และแนวทางการใช้ไบโอชาร์ (ถ่านชีวภาพ) สำหรับเกษตรอินทรีย์ไทย.ในการประชุม BioFach South East Asia 12 – 14 กรกฎาคม 2561, กรุงเทพมหานคร.

Abel, S., Peters, A., Trinks, S., Schonsky, H., Facklam, M., & Wessolek, G. (2013). Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil. Geoderma, 202, 183-191.

Asai, H., Samson, B. K., Stephan, H. M., Songyikhangsuthor, K., Homma, K., Kiyono, Y., & Horie, T. (2009). Biochar amendment techniques for upland rice production in Northern Laos: 1. Soil physical properties, leaf SPAD and grain yield. Field Crops Research, 111(1–2), 81-84.

Ayhan D., (2004). Determination of calorific values of bio-chars and pyro-oils from pyrolysis of beech Trunkbarks. Journal of Analytical and Applied Pyrolysis, 72: 215–219.

Borchard, N., Wolf, A., Laabs, V., Aeckersberg, R., Scherer, H. W., Moeller, A., & Amelung, W. (2012). Physical activation of biochar and its meaning for soil fertility and nutrient leaching - a greenhouse experiment. Soil Use and Management, 28(2), 177-184.

Cao, X., & Harris, W. (2010). Properties of dairy-manure-derived biochar pertinent to its potential use in remediation. Bioresource Technology, 101(14), 5222-5228.

Daosukho, S., Kongkeaw, A., & Oengeaw, U. (2012). The development of durian shell biochar as a nutrition enrichment medium for agricultural purpose: part 1 chemical and physical characterization. Bulletin of Applied Sciences Department of Science Service, 1(1), 133-141.

Eykelbosh, A.J., Johnson, M.S., Queiroz, E.S.d, Dalmagro, H.J., & Couto, E.G. (2014). Biochar from sugarcane filtercake reduces soil CO2 emissions relative to raw residue and improves water retention and nutrient availability in a highly-weathered tropical soil. Plos one, 9(6), 1-9.

Farneselli, M., Benincasa, P., Tosti, G., Simonne, E., Guiducci, M., & Tei, F. (2015). High fertigation frequency improves nitrogen uptake and crop performance in processing tomato grown with high nitrogen and water supply. Agricultural Water Management, 154, 52-58.

Houben, D., Evrard, L., & Sonnet, P. (2013). Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar. Chemosphere, 92(11), 1450-1457.

International Biochar Initiative. (2015). Standardized Product definition and product testing guidelines for biochar that is used in soil. Retrieved from https:// www.biochar- international. org/wp-content/uploads/2018/04/IBI_Biochar_Stan dards_V2.1_Final.pdf

Johannes, L. (2007). A handful of carbon. Nature, 447(7141), 143-144.

Kallayasiri, W., & Wijitkosum, S. (2013). The effect of biochar on improvement of macronutrients in sandy clay used for growing upland rice. In the 3rd international conference on sciences and social sciences 2013: research and development for sustainable life quality. Maha Sarakham: Rajabhat MahaSarakham University.

Liang, B., Lehmann, J., Solomon, D., Kinyangi, J., Grossman, J., O'Neill, B., & Neves, E.G. (2006). Black carbon increases cation exchange capacity in soils. Soil science society of america journal, 70(5), 1719-1730.

Li, X.M., Shen, Q.R., Zhang, D.Q., Mei, X.L., Ran, W., Xu, Y.C., & Yu, G.H. (2013). Functional groups determine biochar properties (pH and EC) as studied by two-dimensional C-13 NMR correlation spectroscopy. Plos one, 8(6). 1-7.

Morales, M.M., Comerford, N., Guerrini, I.A., Falcao, N.P.S., & Reeves, J.B. (2013). Sorption and desorption of phosphate on biochar and biochar-soil mixtures. Soil Use and Management, 29(3), 306-314.

Ohsowski, B.M., Klironomos, J.N., Dunfield, K.E., & Hart, M.M. (2012). The potential of soil amendments for restoring severely disturbed grasslands. Applied Soil Ecology, 60(0), 77-83.

Ulyett, J., Sakrabani, R., Kibblewhite, M., & Hann, M. (2014). Impact of biochar addition on water retention, nitrification and carbon dioxide evolution from two sandy loam soils. European Journal of Soil Science, 65(1), 96-104.

Singh, B., Dolk, M.M., Shen, Q., & Camps-Arbestain, M. (2017). Chapter 3: Biochar pH, electrical conductivity and liming potential. Biochar: A Guide to Analytical Methods, (p.23). Australia: Csiro Publishing.

Yao, Y., Gao, B., Chen, H., Jiang, L., Inyang, M., Zimmerman, A. R., & Li, H. (2012). Adsorption of sulfamethoxazole on biochar and its impact on reclaimed water irrigation. Journal of Hazardous Materials, 209–210(0), 408-413.

Zhao, X.-r., Li, D., Kong, J., & Lin, Q.-m. (2014). Does biochar addition influence the change points of soil phosphorus leaching. Journal of Integrative Agriculture, 13(3), 499-506.

Downloads

Published

2021-12-27

Issue

Section

Research Article