Study of Flow Pattern and Temperature Distribution of Air Inside Cultivable Greenhouse
Main Article Content
Abstract
The objective of this research is to calculate flow pattern and temperature distribution inside different greenhouse geometries comprising of box, curve, triangle, different curve, and different triangle greenhouses. Three categories of vent design (width = 0.5m) are installed at roof, side, and both roof and side of the greenhouse. The rang of heat flux from the floor considered in this research is between 30-100 W/m2 .Velocity and temperature inside the greenhouse are calculate by computational fluid dynamics technique in two dimensionally. The simulation results show that mean temperature and ventilation rate are depended on the heat flux. A vent on both roof and side performs the maximized ventilation compared with other cases. The box, curve, and triangle greenhouses have better ventilation rate than different curve and different triangle greenhouses.
Article Details
เนื้อหาและข่อมูลในบทความที่ลงตีพิมพ์ในวารสารวิชาการ เทคโนโลยี พลังงาน และสิ่งแวดล้อม บัณฑิตวิทยาลัย วิทยาลัยเทคโนโลยีสยาม ถือเป็นข้อคิดเห็นและความรับผิดชอบของผู้เขียนบทความโดยตรง ซึ่งกองบรรณาธิการวารสารไม่จำเป็นต้องเห็นด้วย หรือว่าร่วมรับผิดชอบใด ๆ
บทความ ข้อมูล เนื้อหา รูปภาพ ฯลฯ ที่ได้รับการตีพิมพ์ในวารสารวิชาการ เทคโนโลยี พลังงาน และสิ่งแวดล้อม บัณฑิตวิทยาลัย วิทยาลัยเทคโนโลยีสยาม ถือเป็นลิขสิทธิ์ของวารสารวิชาการ เทคโนโลยี พลังงาน และสิ่งแวดล้อม บัณฑิตวิทยาลัย วิทยาลัยเทคโนโลยีสยาม หากบุคคล หรือหน่วยงานใดต้องการนำทั้งหมด หรือส่วนหนึ่งส่วนใดไปเผยแพร่ต่อ หรือเพื่อกระทำการใด ๆ จะต้องได้รับอนุญาต เป็นลายลักษณ์อักษรจากวารสารวิชาการ เทคโนโลยี พลังงาน และสิ่งแวดล้อม บัณฑิตวิทยาลัย วิทยาลัยเทคโนโลยีสยาม เท่านั้น
References
[2] Wang, S., Boulard, T., and Haxaire, R., 1999, “Air Speed Profiles in A Naturally Ventilated Greenhouse with A Tomato Crop”, Agricultural and Forest Meteorology, Vol.96, pp.181-188.
[3] Perez, P.J., Baeza, E., Montero, J.I., and Bailey, B.J., 2004, “Natural Ventilation of Parral Greenhouses”, Biosystems Engineering, Vol.87, No.3, pp.355-366.
[4] Sase, S., Reiss, E., Both, A.J., and Roberts, W.J., 2002, Developing a Natural Ventilation Model for Open-Roof Greenhouse, Center for Controlled Environment Agriculture, pp. 1-9.
[5] Sbita, L., Boulard, T., and Mermier, M., 1999, “Natural Ventilation Performance of A Greenhouse Tunnel in South Tunisia”, Agricultural Engineering, Vol.76, pp.109-118.
[6] Kakac, S., and Yener, Y., 1995, Convective Heat Transfer, Second Edition, Boca Raton Ann Arbor, London, pp.23-46.
[7] ทนงเกียรติ เกียรติศิริโรจน์, 2531, อนุกรมพลังงานออกแบบและการใช้พลังงานอย่างมีประสิทธิภาพ เล่มที่ 1 การแผ่รังสีและตัวรับรังสี, สถาบันเทคโนโลยีพระจอมเกล้าธนบุรี, กรุงเทพฯ, หน้า 1-25.
[8] จงจิตร์ หิรัญลาภ, 2541, กระบวนการพลังงานแสงอาทิตย์ในรูปความร้อน, มหาวิทยาลัยเทคโนโลยี
พระจอมเกล้าธนบุรี, กรุงเทพฯ, หน้า 1-26.
[9] Duffie, J.A.and Beckman,W.A., 1991, “Solar Engineering of Thermal Processes”, John Wiley & Sons, New York, pp. 1-146.
[10] Holman, J.P, 2001, “Heat Transfer”, McGraw-Hill, New York, pp. 225-231.