Values, bioactive compound, antioxidant activities of brown rice and germinated brown rice, and the pellet products

Authors

  • Sutthidech Preecharram Department of General Science, Faculty of Science and Engineering, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000, Thailand
  • Saijai Posoongnoen Department of Chemistry, Faculty of Science and Technology, Nakhon Ratchasima Rajabhat University, Nakhon Ratchasima 30000, Thailand
  • Theera Thummavongsa Department of Biology, Faculty of Science and Technology, Nakhon Ratchasima Rajabhat University, Nakhon Ratchasima 30000, Thailand
  • Witchuda Pasom Department of Physics, Faculty of Science and Technology, Sakon Nakhon Rajabhat University, Sakon Nakhon 47000, Thailand
  • Sirin Panyakom Department of General Science, Faculty of Education, Sakon Nakhon Rajabhat University, Sakon Nakhon 47000, Thailand
  • Thitiya Sripakdee Chemistry program, Faculty of Science and Technology, Sakon Nakhon Rajabhat University, Sakon Nakhon 47000, Thailand
  • Jinda Jandaruang Chemistry program, Faculty of Science and Technology, Sakon Nakhon Rajabhat University, Sakon Nakhon 47000, Thailand

DOI:

https://doi.org/10.55674/cs.v17i1.257996

Keywords:

Phenolic, GABA, Germinated brown rice, Antioxidant, Proximate, Rice pellets

Abstract

This study aimed to explore the dietary components, phenolic compounds, GABA content, and antioxidant capacity of brown rice and germinated brown rice from two rice varieties: the glutinous rice variety Kor Khor 6 (RD6) and the paddy rice type Hom Mali 105 rice. The study findings indicated that protein composition varied between 6.76 – 7.91%, fat content ranged from 2.49 – 2.85%, and carbohydrate content varied from 73.65 – 79.83%. The average energy value is 362 kcal 100 g –1. Germinated brown rice of Hom Mali 105 has the highest GABA levels with 4.70 mg 100 g–1 dry weight. The Hom Mali 105 exhibited the highest levels of phenolic compounds, registering at 0.5 mg 100 g–1 dry weight. Germinated brown rice of Hom Mali 105 has the highest capacity to bind to DPPH free radicals and Fe2+, which IC50 values of 7.12 and 82.00 mg mL–1, respectively. Following the research on rice pelleting, the result of pellets was discovered to be completely round and undamaged. This study shows that brown rice and germinated brown rice are good sources of nutrients and energy. They also possess potent antioxidant qualities. Preliminary rice powder pellets were produced from germinated brown rice of Hom Mali 105. These rice pellets can be molded into uniquely shaped products. The solid density, water absorption, and hardness of the rice pellets were measured at 1.12 ± 0.05 g cm-³, 3.83 ± 1.02 %, and 57.86 ± 5.88 N, respectively. These pellets are easy to consume and offer a complete range of nutrients.

GRAPHICAL ABSTRACT

submission_257996_27524_coverImage_en_US.png

HIGHLIGHTS

  • Brown rice and germinated brown rice has high proximate composition, phenolic compounds, antioxidant activity and gamma aminobutyric acid.
  • Rice powder pellets can be shaped into products with unique shapes.
  • This dish is simple to eat and provides complete nutrients.

References

B. Burlando, L. Cornara, Therapeutic properties of rice constituents and derivatives (Oryza sativa L.): A review update, Trends Food Sci. 40(1) (2014) 82-98. 10.1016/j.tifs.2014.08.002.

J. Jandaruang, S. Preecharram, Determination of biochemical compositions and antioxidant activities of Hom Mali 105 rice, SNRUJST. 12(1) (2020) 146-154.

S. Preecharram, S. Posoongnoen, T. Thummawongsa, T. Sripakdee, S. Tawil, N. Poomsuk, J. Jandaruang, Proximate composition and antioxidant activity of young flattened rice (Khao-Mao), Trends Sci. 20(4) (2023) 6575. 10.48048/tis.2023.6575.

S. Sen, R. Chakraborty, P. Kalita, Rice-not just a staple food: A comprehensive review on its phytochemicals and therapeutic potential, Trends Food Sci. 97 (2020) 265-285. 10.1016/j.tifs.2020.01.022.

P. Goufo, H. Trindade, Rice antioxidants: phenolic acids, flavonoids, anthocyanins, proanthocyanidins, tocopherols, tocotrienols, γ-oryzanol, and phytic acid, Food Sci Nutr. 2(2) (2014) 75-104. 10.1002/fsn3.86.

D.K. Verma, P.P. Srivastav, Proximate composition, mineral content and fatty acids analyses of aromatic and non-aromatic Indian rice, Rice Sci. 24(1) (2017) 21-31. 10.1016/j.rsci.2016.05.005

A. Moongngarm, N. Saetung, Comparison of chemical compositions and bioactive compounds of germinated rough rice and brown rice, Food Chem. 122(3) (2010) 782-788. 10.1016/j.foodchem.2010.03.053.

K.R. Das, K. Medhabati, K. Nongalleima, H.S. Devi, The potential of dark purple scented rice-from staple food to nutraceutical, Curr World Environ. 9(3) (2014) 867-876. 10.12944/CWE.9.3.38.

C. Taechapairoj, K. Kaewyot, Effects of hot-air fluidized-bed drying on cooking quality, antioxidant activity and bioactive compounds in germinated brown rice, Scie. Eng. Health Stud. 14(1) (2020) 62-72. 10.14456/sehs.2020.6.

E. Karimi, P. Mehrabanjoubani, M. Keshavarzian, E. Oskoueian, H.Z. Jaafar, A. Abdolzadeh, Identification and quantification of phenolic and flavonoid components in straw and seed husk of some rice varieties (Oryza sativa L.) and their antioxidant properties, J. Sci. Food Agric. 94(11) (2014) 2324-2330. 10.1002/jsfa.6567.

T. Nakayama, Y. Nagai, Y. Uehara, Y. Nakamura, S. Ishii, H. Kato, Y. Tanaka, Eating glutinous brown rice twice a day for 8 weeks improves glycemic control in Japanese patients with diabetes mellitus, Nutr. Diabetes. 7 (2017) 10.1038/nutd.2017.26.

Q. Sun, D. Spiegelman, R.M. van Dam, M.D. Holmes, V.S. Malik, W.C. Willett, F.B. Hu, White rice, brown rice, and risk of type 2 diabetes in US men and women, Arch Intern Med. 170(11) (2010) 961-969. 10.1001/archinternmed.2010.109.

U. Reddy, Exploring the therapeutic potential and nutritional properties of ‘karuppu kavuni’variety rice of Tamil nadu, Int. J. Pharm. Sci. 9(1) (2018) 88-96. 10.22376/ijpbs.2018.9.1.p88-96.

N. Samsalee, S. Mangklanan, Development of tablet product from riceberry broken rice, RMUTP Sci. J. 15(1) (2022) 116-128. 10.14456/jrmu

tp.2021.10.

S. Preecharram, S. Phosri, T. Theansungnoen, W. Roschat, S. Arthan, S. Lasopha, J. Jandaruang, Nutritional Values and Their Potential Applications in Food Products of Krabok Seed (Irvingia malayana), Trends Sci. 21(1) (2024) 7316. 10.48048/tis.2024.7316

W. Horwitz, Official methods of analysis of AOAC International, 17th ed. AOAC International, Gaithersburg, Md., 2000.

R. Nurliyana, I. Syed Zahir, K. Mustapha Suleiman, M.R. Aisyah, K. Kamarul Rahim, Antioxidant study of pulps and peels of dragon fruits: a comparative study, Int. Food Res. J. 17 (2010) 367-375.

G.E. Amidon, P.J. Secreast, D. Mudie, Particle, powder, and compact characterization, in: Y. Qiu, Y. Chen, G.G.Z. Zhang, L. Yu, R.V. Mantri (Eds.), Developing solid oral dosage forms, Academic Press, 2017, pp. 271-293.

Z. Muhammad, A. Farooq, A. Shaukat, I. Tahira, Proximate composition and minerals profile of selected rice (Oryza sativa L.) varieties of Pakistan, Asian J. Chem. 24(1) (2012) 417-421.

E. Pakuwal, P. Manandhar, Comparative study of nutritional profile of rice varieties in Nepal, Nepal J. Biotechnol. 9(1) (2021) 42-49. 10.3126/njb.v9i1.38648.

N.C. Onuegbu, D.C. Okafor, A. Peter-Ikechukwu, B.C. Ijioma, J.C. Ibeabuchi, N. N.E, S.O. Alagbaoso, C.N. Eluchie, D. A.K., Production of Mushroom Based Food Condiment and Nutritional and Anti-nutritional Properties of Pleurotus ostreatus, Nat. Sci. 15(6) (2017) 110-120. 10.7537/marsnsj150617.12

A. Oko, B. Ubi, A. Efisue, N. Dambaba, Comparative analysis of the chemical nutrient composition of selected local and newly introduced rice varieties grown in Ebonyi State of Nigeria, Int. J. Agric. Sci. 2(2) (2012) 16-23. 10.5923/j.ijaf.20120202.04.

A. Ghasemzadeh, M.T. Karbalaii, H.Z. Jaafar, A. Rahmat, Phytochemical constituents, antioxidant activity, and antiproliferative properties of black, red, and brown rice bran, Chem. Cent. J. 12(1) (2018) 1-13. 10.1186/s13065-018-0382-9.

T.-W. Chou, C.-Y. Ma, H.-H. Cheng, Y.-Y. Chen, M.-H. Lai, A rice bran oil diet improves lipid abnormalities and suppress hyperinsulinemic responses in rats with streptozotocin/nicotinamide-induced type 2 diabetes, J. Clin. Biochem. Nutr. 45(1) (2009) 29-36. 10.3164/jcbn.08-257.

B.O. Juliano, Rice in human nutrition, Int. Rice Res. Inst., 1993.

G. Das, J.K. Patra, J. Choi, K.-H. Baek, Rice grain, a rich source of natural bioactive compounds, Pak. J. Agric. Sci. 54(3) (2017) 671-682. 10.21162/PAKJAS/17.2973.

R. Valarmathi, M. Raveendran, S. Robin, N. Senthil, Unraveling the nutritional and therapeutic properties of ‘Kavuni’a traditional rice variety of Tamil Nadu, J. Plant Biochem. Biotechnol. 24(3) (2015) 305-315. 10.1007/s13562-014-0274-6.

M. Sova, Antioxidant and antimicrobial activities of cinnamic acid derivatives, Mini-Rev. Med. Chem. 12(8) (2012) 749-767. 10.2174/138955712801264792.

P. De, M. Baltas, F. Bedos-Belval, Cinnamic acid derivatives as anticancer agents-a review, Int. J. Sci. Res. 18(11) (2011) 1672-1703. 10.2174/092986711795471347.

D. Karladee, S. Suriyong, γ-Aminobutyric acid (GABA) content in different varieties of brown rice during germination, Sci. Asia. 38(1) (2012) 13-17. 10.2306/scienceasia1513-1874.2012.38.013.

M. Siddiquee, S. Jahan, Y. Kabir, H. Shozib, BRRI dhan31 generate elevated level of bioactive component, γ-aminobutyric acid (GABA) at pre-germinated brown rice condition, Int. J. Sci. Res. 6(7) (2017) 511-513.

P. Ghosh, A. Roychoudhury, Differential levels of metabolites and enzymes related to aroma formation in aromatic indica rice varieties: comparison with non-aromatic varieties, 3 Biotech. 8(1) (2018) 1-13. 10.1007/s13205-017-1045-6.

G. Liyanaarachchi, K. Mahanama, H. Somasiri, P. Punyasiri, K. Wijesena, J. Kottawa-Arachchi, Profiling of amino acids in traditional and improved rice (Oryza sativa L.) varieties of Sri Lanka and their health promoting aspects, Cereal Res. Commun. 49 (2021) 441-448. 10.1007/s42976-020-00125-x.

M. Guha, Y.N. Sreerama, N. Malleshi, Influence of processing on nutraceuticals of little millet (Panicum sumatrense), Processing and impact on active components in food, Elsevier. 2015, pp. 353-360.

M. Guo, C. Perez, Y. Wei, E. Rapoza, G. Su, F. Bou-Abdallah, N. Chasteen, Iron-binding properties of plant phenolics and cranberry's bio-effects, Dalton Trans. (43) (2007) 4951-4961. 10.1039/B705136K.

S. Khokhar, R.K.O. Apenten, Iron binding characteristics of phenolic compounds: some tentative structure–activity relations, Food Chem. 81(1) (2003) 133-140. 10.1016/S0308-8146(02)00394-1.

K. Zhou, J.-J. Yin, L.L. Yu, ESR determination of the reactions between selected phenolic acids and free radicals or transition metals, Food Chem. 95(3) (2006) 446-457. 10.1016/j.foodchem.2005.01.026

A. Azfar, M.A. Azhar, Development and evaluation of goat milk tablet using dry granulation techniques for nutraceutical purposes, Int. J. Eng. Sci. Technol. 4(1) (2017) 8-14. 10.15282/ijets.7.2017.1.2.1064.

Downloads

Published

2024-11-15

How to Cite

Preecharram, S. ., Posoongnoen, S. ., Thummavongsa, T., Pasom, W., Panyakom, S. ., Sripakdee, T. ., & Jandaruang, J. (2024). Values, bioactive compound, antioxidant activities of brown rice and germinated brown rice, and the pellet products. Creative Science, 17(1), 257996. https://doi.org/10.55674/cs.v17i1.257996