The comparison behaviors of some scintillators for radiation shielding

Authors

  • Sunantasak Ravangvong Phetchaburi Rajabhat University
  • Kittisak Sriwongsa The demonstration school of Silpakorn University, Nakhon Pathom
  • Punsak Glumglomchit Huahin Vitthayalai School, Hua–Hin, Prachuap Khiri Khan
  • Ratchanon Janthimangkul Huahin Vitthayalai School, Hua–Hin, Prachuap Khiri Khan
  • Maysinee Pansuay Huahin Vitthayalai School, Hua–Hin, Prachuap Khiri Khan
  • Salinya Puangfuang Huahin Vitthayalai School, Hua–Hin, Prachuap Khiri Khan
  • Nopparat Suksee Huahin Vitthayalai School, Hua–Hin, Prachuap Khiri Khan
  • Chumphon Khobkham Faculty of Engineering, Thonburi University, Bangkok

DOI:

https://doi.org/10.55674/snrujst.v14i1.244414

Keywords:

Scintillator, Radiation shielding, Build–up factors

Abstract

In this research, the photon interaction of NaI:Tl, LiI:Tl and CsI:Tl scintillators have been comparative studied. The photon interaction effectiveness of scintillators was investigated by determine mass attenuation coefficient (m) and half value layer (HVL) at photon energy ranging 1 keV – 100 GeV using WinXCom computer software program. Build–up factors were computed by Geometric Progression (G–P) fitting formula at energy ranging 15 keV – 15 MeV up to 40 mfp penetration depth. The result shown that, CsI:Tl scintillator was excellent at interacting with photons. This study indicated that CsI:Tl can be developed for radiation detectors and sensors.

References

J. Pejchal, J. Barta, T. Trojek, R. Kucerkova, A. Beitlerova, M. Nikl, Luminescence and scintillation properties of rare-earth-doped LaAlO3 single crystals, Radiat. Meas. 121 (2019) 26 – 31.

J. Oliveira, V. Correia, P. Costa, A. Francesko, G. Rocha, S. Lanceros–Mendez, Stretchable scintillator composites for indirect X-ray detectors, Compos. Part B. 133 (2018) 226 – 231.

M.I. Sayyed, Y. Elmahroug, B.O. Elbashir, Shams A.M. Issa, Gamma–ray shielding properties of zinc oxide soda lime silica glasses, J. Mater. Sci: Mater Electron. 28 (2017) 4064 – 4074.

S.A.M. Issa, Y.B. Saddeek, M.I. Sayyed, H.O. Tekin, O. Kilicoglu, Radiation shielding features using MCNPX code and mechanical properties of the PbO–Na2O–B2O3–CaO–Al2O3–SiO2 glass systems, Compos. B. 167 (2019) 231 – 240.

S.A.M. Issa, M.I. Sayyed, M.H.M. Zaid, K.A. Matori, A Comprehensive Study on Gamma Rays and Fast Neutron Sensing Properties of GAGOC and CMO Scintillators for Shielding Radiation Applications, J. Spec. (2017) 1 – 9.

M.S. Al-Buriahi, B.T. Tonguc, Mass attenuation coefficients, effective atomic numbers and electron densities of some contrast agents for computed tomography, Radiat. Phys. Chem. 177 (2020) 108507.

A.G.M. Santos, R.S.F. Dam, W.L. Salgado, R. Schirru, C.M. Salgado, Determination of mass attenuation coefficient of polylactic acid using gamma densitometry in 50 – 1000 keV energy range, Radiat. Phys. Chem. 177 (2020) 109097.

A.W. El-Sayed, A.F. Michael, A.B. Mohamed, Gamma–ray mass attenuation coefficient and half value layer factor of some oxide glass shielding materials, Ann. Nucl. Ene. 96 (2016) 26 – 30.

S. Jagtap, P. Chopade, S. Tadepalli, A. Bhalerao, S. Gosavi, A review on the progress of ZnSe as inorganic scintillator, Opto-Electron. Rev. 27 (2019) 90 – 103.

A. Phunpueok, V . Thongpool, S. Jaiyen, W. Chewpraditkul, Photoelectric Fraction and Total Mass Attenuation Coefficient of Ce:YAG, Ce:GAGG and Ce:LuAG Single Crystals at 662 keV Gamma Radiation Energy, Mater. Today–Proc. 17 (2019) 1494 – 1499.

M. Bettiol, E. Preziosi, C. Borrazzo, C. Polito, M.N. Cinti, R. Pellegrini, R. Pani, LaBr3:Ce and NaI:Tl performance comparison for single photon emission detector, Nucl. Instrum. Meth. A. 912(21) (2018) 154 – 157.

L. Caifeng, Q. Jianguo, X. Jun, Z. Tonghua, L. Xinxin, A. Li, M. Yunfeng, Z. Pu, S. Junjie, J. Li, W. Mei, H. Zijie, Particle discrimination and fast neutron response for a NaIL:Tl and a NaI:Tl scintillator detector, Nucl. Instrum. Meth. A. 978(21) (2020) 164372.

S. Khan, H.J. Kim, Y.D. Kim, Scintillation characterization of thallium-doped lithium iodide crystals, Nucl. Instrum. Meth. A. 793(1) (2015) 31 – 34.

C. Michail, I. Valais, I. Seferis, N. Kalyvas, G. Fountos, I. Kandarakis, Experimental measurement of a high resolution CMOS detectorcoupled to CsI scintillators under X-ray radiation, Radiat. Meas. 74 (2015) 39 – 46.

A. Kumar, M.I. Sayyed, M. Dong, X. Xue, Effect of PbO on the shielding behavior of ZnO–P2O5 glass system using Monte Carlo simulation, J. Non– Crystalline Solids. 481 (2018) 604 – 607.

S.A.M. Issa, M. Ahmad, H.O. Tekin, Y.B. Saddeek, M.I. Sayyed, Effect of Bi2O3 content on mechanical and nuclear radiation shielding properties of Bi2O3– MoO3–B2O3–SiO2–Na2O–Fe2O3 glass system, Results. Phys. 13 (2019) 102165.

M.G. Dong, O. Agar, H.O. Tekin, O. Kilicoglu, K.M. Kaky, M.I. Sayyed, A comparative study on gamma photon shielding features of various germanate glass systems, Compos. Part B. 165 (2019) 636 – 647.

O. Kilicoglu, E.E. Altunsoy, O. Agar, M. Kamislioglu, M.I. Sayyed, H.O. Tekin, N. Tarhan, Synergistic effect of La2O3 on mass stopping power (MSP)/projected range (PR) and nuclear radiation shielding abilities of silicate glasses, Results. Phys. 14 (2019) 102424.

O.Agar,E.Kavaz,E.E.Altunsoy,O.Kilicoglu,H.O.Tekin, M.I. Sayyed, T.T. Erguzel, N. Tarhan, Er2O3 effects on photon and neutron shielding properties of TeO2– Li2O–ZnO–Nb2O5 glass system, Results. Phys. 13 (2019) 102277.

B. Oto, N. Yıldız, T. Korkut, E. Kavaz, Neutron shielding qualities and gamma ray buildup factors of concretes containing limonite ore, Nucl. Eng. Des. 293 (2015) 166 – 175.

P. Lecoq, Development of new scintillators for medical applications, Nucl. Instrum. Methods Phys. Res. Section A. 809 (2016) 130 – 139.

J. Glodo, Y. Wang, R. Shawgo, C. Brecher, R.H. Hawrami, J. Tower, K.S. Shah, New Developments in Scintillators for Security Applications, Physcs. Proc. 90 (2017) 285 – 290.

Downloads

Published

2021-12-29

How to Cite

Ravangvong, S., Sriwongsa , K., Glumglomchit, P., Janthimangkul, R., Pansuay, M., Puangfuang, S., Suksee, N., & Khobkham, C. (2021). The comparison behaviors of some scintillators for radiation shielding . Creative Science, 14(1), 1–6. https://doi.org/10.55674/snrujst.v14i1.244414