การตรวจวัดวิตามินซีด้วยวิธีทางเคมีไฟฟ้าโดยใช้ขั้วไฟฟ้าไส้ดินสอที่ดัดแปรด้วยฟิล์มแอนดิโมนี

Main Article Content

สิรีรัตน์ ลิศนันท์
ศรัณย์ณพัชญ์ สายเนตร
สุดารัตน์ สมบัติศรี

บทคัดย่อ

วิตามินซีหรือกรดแอสคอร์บิคเป็นสารที่มีความจำเป็นและมีความสำคัญสำหรับสุขภาพ งานวิจัยนี้พัฒนาเซ็นเซอร์ทางเคมีไฟฟ้าเพื่อหาปริมาณกรดแอสคอร์บิคด้วยวิธีที่ง่ายและไว โดยใช้ขั้วไฟฟ้าฟิล์มแอนติโมนี (Sb) และแนฟฟิออน (NF) เตรียมด้วยวิธี ex-situ บนขั้วไฟฟ้าไส้ดินสอ (Pencil Lead Electrode, PLE) จากไซคลิกโวลแทมเมตรีตรวจวัดกรดแอสคอร์บิค แสดงแอโนดิคพีคที่ +0.4 โวลต์ (Ag/AgCl) ในฟอสเฟตบัฟเฟอร์พีเอช 4 โดยใช้ PLE/NF/Sb จากนั้นใช้วิธีแอมเฟอโรเมตรีสำหรับการทำปริมาณวิเคราะห์เนื่องจากเป็นวิธีที่แม่นยำและรวดเร็ว โดยวัดระหว่างสัญญาณกระแสและความเข้มข้นของกรดแอสคอร์บิค ได้ความสัมพันธ์เชิงเส้นที่ 50 - 500 ไมโครโมลาร์ (R2 = 0.9959) ขีดจำกัดตํ่าสุดในการตรวจวัด LOD (3SD/m) 2.57 ไมโครโมลาร์ และพบว่าผลของสารรบกวน ได้แก่ เกลือของสารอนินทรีย์และสารอินทรีย์ไม่มีผลอย่างมีนัยสำคัญ (ร้อยละการเปลี่ยนแปลงของสัญญาณกระแส ±5 %) ต่อการตรวจวัดกรดแอสคอร์บิคผลการทดลองส่วนสุดท้ายพบว่าเซ็นเซอร์เคมีไฟฟ้าดัดแปรในงานนี้สามารถนำมาประยุกต์ใช้ตรวจวัดปริมาณกรดแอสคอร์บิคในเม็ดยาวิตามินซีที่มีขายตามท้องตลาดได้ดี

Article Details

รูปแบบการอ้างอิง
[1]
ลิศนันท์ ส., สายเนตร ศ., และ สมบัติศรี ส., “การตรวจวัดวิตามินซีด้วยวิธีทางเคมีไฟฟ้าโดยใช้ขั้วไฟฟ้าไส้ดินสอที่ดัดแปรด้วยฟิล์มแอนดิโมนี”, RMUTI Journal, ปี 18, ฉบับที่ 1, น. 17–27, เม.ย. 2025.
ประเภทบทความ
บทความวิจัย

เอกสารอ้างอิง

Abe-Matsumoto, L.T., Sampaio, G.R. and Bastos, D.H.M. (2020). Is Titration as Accurate as HPLC for Determination of Vitamin C in Supplements? —Titration versus HPLC for Vitamin C Analysis. American Journal of Analytical Chemistry, 11, 269-279. https://doi.org/10.4236/ajac.2020.117021

Annu, Sharma, S., Jain, R. and Raja, A. N. (2020). Review—Pencil Graphite Electrode: An Emerging Sensing Material. Journal of The Electrochemical Society, 167(3), 037501. https://doi.org/10.1149/2.0012003JES

Argoubi, W., Rabti, A., Ben Aoun, S. and Raouafi, N. (2019). Sensitive Detection of Ascorbic Acid Using Screen-Printed Electrodes Modified by Electroactive Melanin-Like Nanoparticles. RSC Advances, 64, 37384-37390. https://doi.org/10.1039/C9RA07948C

Desai, A.P. (2019). UV Spectroscopic Method for Determination of Vitamin C (Ascorbic Acid) Content in Different Fruits in South Gujarat Region. International Journal of Environmental Sciences & Natural Resources, 22(2), https://doi.org/10.19080/IJESNR.2019.21.556056

Dhara, K. and Debiprosad, R.M. (2019). Review on Nanomaterials-Enabled Electrochemical Sensors for Ascorbic Acid Detection. Analytical Biochemistry, 586, 113415. https://doi.org/10.1016/j.ab.2019.113415

Dodevska, T., Hadzhiev, D. and Shterev, I. (2023). A Review on Electrochemical Microsensors for Ascorbic Acid Detection: Clinical, Pharmaceutical, and Food Safety Applications. Micromachines, 14(1), https://doi.org/10.3390/mi14010041

Doseděl, M., Jirkovský, E., Macáková, K., Krčmová, L.K., Javorská, L., Pourová, J., Mercolini, L., Remião, F., Nováková, L., Mladěnka, P. and on behalf of the Oemonom. (2021). Vitamin C—Sources, Physiological Role, Kinetics, Deficiency, Use, Toxicity, and Determination. Nutrients, 13(2), 615, https://doi.org/10.3390/nu13020615

Ghosh, J.C. and Kappana, A.N. (1924). Electrodeposition of Antimony. The Journal of Physical Chemistry, 28(2), 149-160. https://doi.org/10.1021/j150236a005

Huang, L., Tian, S., Zhao, W., Liu, K. and Guo, J. (2021). Electrochemical Vitamin Sensors: A Critical Review. Talanta, 222, 121645. https://doi.org/10.1016/j.talanta.2020.121645

Jacob, R.A. and Sotoudeh, G. (2002). Vitamin C Function and Status in Chronic Disease. Nutrition in Clinical Care, 5(2), 66-74. https://doi.org/10.1046/j.1523-5408.2002.00005.x

Kong, L., Gan, Y., Liang, T., Zhong, L., Pan, Y., Kirsanov, D., Legin, A., Wan, H. and Wang, P. (2020). A Novel Smartphone-Based CD-Spectrometer for High Sensitive and Cost-Effective Colorimetric Detection of Ascorbic Acid. Analytica Chimica Acta, 1093, 150-159. https://doi.org/10.1016/j.aca.2019.09.071

Ma, F., Luo, J., Li, X., Liu, S., Yang, M. and Chen, X. (2021). A “Switch-On” Fluorescence Assay Based on Silicon Quantum Dots for Determination of Ascorbic Acid. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 249, 119343. https://doi.org/10.1016/j.saa.2020.119343

Malik, M., Narwal, V. and Pundir, C.S. (2022). Ascorbic Acid Biosensing Methods: A Review. Process Biochemistry, 118, 11-23. https://doi.org/10.1016/j.procbio.2022.03.028

Mason, S.A., Parker, L., van der Pligt, P. and Wadley, G.D. (2023). Vitamin C Supplementation for Diabetes Management: A Comprehensive Narrative Review. Free Radical Biology and Medicine, 194, 255-283. https://doi.org/10.1016/j.freeradbiomed.2022.12.003

Mieszczakowska-Frąc, M., Celejewska, K. and Płocharski, W. (2021). Impact of Innovative Technologies on the Content of Vitamin C and Its Bioavailability from Processed Fruit and Vegetable Products. Antioxidants, 10(1), 54, https://doi.org/10.3390/antiox10010054

Nigović, B. and Hocevar, S.B. (2011). Antimony Film Electrode for Direct Cathodic Measurement of Sulfasalazine. Electrochimica Acta, 58, 523-527. https://doi.org/10.1016/j.electacta.2011.09.087

Njus, D., Kelley, P.M., Tu, Y.-J. and Schlegel, H.B. (2020). Ascorbic Acid: The Chemistry Underlying its Antioxidant Properties. Free Radical Biology and Medicine, 159, 37-43. https://doi.org/10.1016/j.freeradbiomed.2020.07.013

Pinyou, P., Blay, V., Chansaenpak, K. and Lisnund, S. (2020). Paracetamol Sensing with a Pencil Lead Electrode Modified with Carbon Nanotubes and Polyvinylpyrrolidone. Chemosensors, 8(4), https://doi.org/10.3390/chemosensors8040133

Samayoa-Oviedo, H.Y. and Laskin, J. (2022). Undergraduate Laboratory Project Comparing Two Analytical Techniques for Ascorbic Acid Determination. Journal of Chemical Education, 99(12), 4043-4050. https://doi.org/10.1021/acs.jchemed.2c00224

Sawan, S., Maalouf, R., Errachid, A. and Jaffrezic-Renault, N. (2020). Metal and Metal Oxide Nanoparticles in the Voltammetric Detection of Heavy Metals: A Review. TrAC Trends in Analytical Chemistry, 131, 116014. https://doi.org/10.1016/j.trac.2020.116014

Serrano, N., Díaz-Cruz, J.M., Ariño, C. and Esteban, M. (2016). Antimony-Based Electrodes for Analytical Determinations. TrAC Trends in Analytical Chemistry, 77, 203-213. https://doi.org/10.1016/j.trac.2016.01.011

Tyszczuk-Rotko, K., Bęczkowska, I., Wójciak-Kosior, M. and Sowa, I. (2014). Simultaneous Voltammetric Determination of Paracetamol and Ascorbic Acid Using a Boron-Doped Diamond Electrode Modified with Nafion and Lead Films. Talanta, 129, 384-391. https://doi.org/10.1016/j.talanta.2014.06.023

Venegas, C.J., Gutierrez, F. A., Reeves-McLaren, N., Rivas, G.A., Ruiz-León, D. and Bollo, S. (2023). In situ or Ex situ Synthesis for Electrochemical Detection of Hydrogen Peroxide—An Evaluation of Co2SnO4/RGO Nanohybrids. Micromachines, 14(5), https://doi.org/10.3390/mi14051059

Zhu, M., Tang, J., Tu, X. and Chen, W. (2020). Determination of Ascorbic Acid, Total Ascorbic Acid, and Dehydroascorbic Acid in Bee Pollen Using Hydrophilic Interaction Liquid Chromatography-Ultraviolet Detection. Molecules, 25(23), https://doi.org/10.3390/molecules25235696