แบบจำลองกำหนดการเชิงจำนวนเต็มแบบผสมสำหรับการแก้ปัญหาสถานที่ตั้งและการจัดเส้นทางแบบสองระดับในห่วงโซ่อุปทานชีวมวล

Main Article Content

เจ้านาย ครุฑไชยันต์
เอื้ออารี บุญเพิ่ม

บทคัดย่อ

ในงานวิจัยนี้นำเสนอแบบจำลองกำหนดการเชิงจำนวนเต็มแบบผสมเพื่อแก้ปัญหาสถานที่ตั้งและจัดเส้นทางเพื่อเพิ่มประสิทธิภาพการจัดการห่วงโซ่อุปทานชีวมวลแบบสองระดับ โดยมีเป้าหมายในการเลือกศูนย์รวบรวมไม้และกำหนดเส้นทางการขนส่งจากพื้นที่ในป่าไม้ไปยังศูนย์รวบรวมและจัดเส้นทางจากศูนย์รวบรวมไปยังโรงกลั่นชีวภาพ เพื่อให้ได้ต้นทุนรวมที่ตํ่าที่สุด เนื่องจากแบบจำลองเริ่มต้นเป็นแบบจำลองไม่เชิงเส้น ผู้วิจัยจึงได้ทำการแปลงแบบจำลองให้เป็นแบบจำลองเชิงเส้นเพื่อให้แบบจำลองสามารถหาผลลัพธ์ได้ เมื่อทดสอบแบบจำลองที่นำเสนอด้วยข้อมูลชีวมวลพบว่า ผลลัพธ์ที่ได้จากการจัดเส้นทางทั้งสองระดับสามารถลดค่าใช้จ่ายโดยรวมได้ถึง 12.92 % เมื่อเปรียบเทียบกับการจัดเส้นทางเพียงระดับเดียว ดังนั้น ผลลัพธ์ที่ได้จากงานวิจัยนี้สามารถเพิ่มประสิทธิภาพโลจิสติกส์ของห่วงโซ่อุปทานชีวมวลในประเทศไทย ซึ่งจะส่งเสริมการพัฒนาพลังงานชีวมวลที่ยั่งยืนในอนาคตได้

Article Details

รูปแบบการอ้างอิง
[1]
ครุฑไชยันต์ เ. และ บุญเพิ่ม เ., “แบบจำลองกำหนดการเชิงจำนวนเต็มแบบผสมสำหรับการแก้ปัญหาสถานที่ตั้งและการจัดเส้นทางแบบสองระดับในห่วงโซ่อุปทานชีวมวล”, RMUTI Journal, ปี 17, ฉบับที่ 2, น. 17–30, ส.ค. 2024.
ประเภทบทความ
บทความวิจัย

เอกสารอ้างอิง

Department of Alternative Energy Development and Efficiency, Ministry of Energy of Thailand. (2020). Alternative Energy Development Plan 2018-2037 (AEDP 2018-2037). Access (15 May 2024). Available (https://policy.asiapacificenergy.org/node/4351)

Bowling, I. M., Ponce-Ortega, J. M., and El-Halwagi, M. M. (2011). Facility Location and Supply Chain Optimization for a Biorefinery. Industrial & Engineering Chemistry Research. Vol. 50, No. 10, pp. 6276-6286. DOI: 10.1021/ie101921y

Johnson, D. M., Jenkins, T. L., and Zhang, F. (2012). Methods for Optimally Locating a Forest Biomass-to-Biofuel Facility. Biofuels. Vol. 3, Issue 4, pp. 489-503. DOI: 10.4155/bfs.12.34

Woo, H., Acuna, M., Moroni, M., Taskhiri, M. S., and Turner, P. (2018). Optimizing the Location of Biomass Energy Facilities by Integrating Multi-Criteria Analysis (MCA) and Geographical Information Systems (GIS). Forests. Vol. 9, Issue 10, DOI: 10.3390/f9100585

Nguyen, D. H. and Chen, H. (2018). Supplier Selection and Operation Planning in Biomass Supply Chains with Supply Uncertainty. Computers & Chemical Engineering. Vol. 118, pp. 103-117. DOI: 10.1016/j.compchemeng.2018.07.012

Costa, Y. and Melo, T. (2024). Facility Location Modeling in Supply Chain Network Design: Current State and Emerging Trends. In: Sarkis, J. (eds) The Palgrave Handbook of Supply Chain Management. Palgrave Macmillan, Cham. DOI: 10.1007/978-3-031-19884-7_101

Solomon, M. (1987). Algorithms for the Vehicle Routing and Scheduling Problems with Time Window Constraints. Operations Research. Vol. 35, No. 2, pp. 254-265

Tan, S.-Y. and Yeh, W.-C. (2021). The Vehicle Routing Problem: State-of-the-Art Classification and Review. Applied Sciences. Vol. 11, Issue 21, DOI: 10.3390/app112110295

Gracia, C., Velazquez-Martı´, B., and Estornell, J. (2014). An Application of the Vehicle Routing Problem to Biomass Transportation. Biosystems Engineering. Vol. 124, pp. 40-52. DOI: 10.1016/j.biosystemseng.2014.06.009

Allen, J., Browne, M., Hunter, A., Boyd, J., and Palmer, H. (1998). Logistics Management and Costs of Biomass Fuel Supply. International Journal of Physical Distribution & Logistics Management. Vol. 28, No. 6, pp. 463-477. DOI: 10.1108/09600039810245120

Searcy, E., Flynn, P., Ghafoori, E., and Kumar, A. (2007). The Relative Cost of Biomass Energy Transport. Applied Biochemistry and Biotechnology. Vol. 137, pp. 639-652. DOI: 10.1007/s12010-007-9085-8

Perpina, C., Alfonso, D., Pérez-Navarro, A., Penalvo, E., Vargas, C., and Cárdenas, R. (2009). Methodology Based on Geographic Information Systems for Biomass Logistics and Transport Optimisation. Renewable Energy. Vol. 34, Issue 2, pp. 555-565. DOI: 10.1016/j.renene.2008.05.047

Sajida, K., Nazir Maryam, S., Kausar, N., Agarwal, P., Ozbilge, E., and Bulut, A. (2023). Optimizing Transportation Cost for Biomass Supply Chain. Thermal Science. Vol. 27, Special Issue 1, pp. S245-S251

Cooper, L. (1972). The Transportation-Location Problem. Operations Research. Vol. 20, No. 1, pp. 94-108. DOI: 10.1287/opre.20.1.94

Drexl, M. and Schneider, M. (2015). A Survey of Variants and Extensions of the Location-Routing Problem. European Journal of Operational Research. Vol. 241, Issue 2, pp. 283-308. DOI: 10.1016/j.ejor.2014.08.030

Ransikarbum, K., Wattanasaeng, N., and Madathil, S. C. (2023). Analysis of Multi-Objective Vehicle Routing Problem with Flexible Time Windows: The Implication for Open Innovation Dynamics. Journal of Open Innovation: Technology, Market, and Complexity. Vol. 9, Issue 1, DOI: 10.1016/j.joitmc.2023.100024

Yunusoglu, P., Ozsoydan, F. B., and Bilgen, B. (2024). A Machine Learning-Based Two-Stage Approach for the Location of Undesirable Facilities in the Biomass-to-Bioenergy Supply Chain. Applied Energy. Vol. 362, DOI: 10.1016/j.apenergy.2024.122961

Yeng, F. F., Zainuddin, Z. M., and Pheng, H. S. (2024). Optimizing Palm Oil Biomass Supply Chain Logistics through Multi-Objective Location-Routing Model. Malaysian Journal of Fundamental and Applied Sciences (MJFAS). Vol. 20, No. 2, pp. 247-265

Cao, J. X., Zhang, Z., and Zhou, Y. (2021). A Location-Routing Problem for Biomass Supply Chains. Computers & Industrial Engineering. Vol. 152, DOI: 10.1016/j.cie.2020.107017

Wang, C., Cao, T., Nguyen, D. D., and Dang, T. (2024). Bi-Objective Optimization Modeling for Biomass Supply Chain Planning. Measurement and Control. Vol. 362, DOI: 10.1177/00202940241226603

Xu, R., Huang, Y., and Xiao, W. (2023). A Two-Level Variable Neighborhood Descent for a Split Delivery Clustered Vehicle Routing Problem with Soft Cluster Conflicts and Customer-Related Costs. Sustainability. Vol. 15, No. 9, pp. 1-22

Ghasemi, P., Hemmaty, H., Chobar, A. P., Heidari, M. R., and Keramati, M. (2023). A Multi-Objective and Multi-Level Model for Location-Routing Problem in the Supply Chain Based on the Customer’s Time Window. Journal of Applied Research on Industrial Engineering. Vol. 10, Issue 3, pp. 412-426. DOI: 10.22105/jarie.2022.321454.1414