ผลกระทบของอลูมินาต่อการเร่งปฏิกิริยาการเลือกเผาไหม้ก๊าซคาร์บอนมอนอกไซด์ของโลหะออกไซด์ผสมคอปเปอร์-ซีเรียม

Main Article Content

พรไพบูลย์ พุทธคุณ
คมกฤช สว่างกาญจน์
มาลัย วงศ์วรรณกานต์
เอกรัตน์ วงษ์แก้ว

บทคัดย่อ

ก๊าซคาร์บอนมอนอกไซด์ที่เจือปนอยู่ในเชื้อเพลิงไฮโดรเจนที่ผลิตจากกระบวนการรีฟอร์มมิ่งมีความเป็นพิษต่อขั้วไฟฟ้าในเซลล์เชื้อเพลิงแบบเยื่อเมมเบรนแลกเปลี่ยนโปรตอน ส่งผลให้ประสิทธิภาพการทำงานของเซลล์เชื้อเพลิงลดลง จึงต้องกำจัดก๊าซคาร์บอนมอนอกไซด์ออกจากก๊าซโฮโดรเจนก่อนที่จะนำไปใช้งาน ดังนั้นงานวิจัยนี้จึงมีวัตถุประสงค์ในการพัฒนาตัวเร่งปฏิกิริยาเพื่อกำจัดก๊าซคาร์บอนมอนอกไซด์ที่เจือปนในเชื้อเพลิงไฮโดรเจน โดยศึกษาผลกระทบของปริมาณอลูมินาต่อความว่องไวในการเร่งปฏิกิริยาการเผาไหม้ก๊าซคาร์บอนมอนอกไซด์ และการเลือกเกิดปฏิกิริยาการเผาไหม้ก๊าซคาร์บอนมอนอกไซด์ในสภาวะที่มีก๊าซไฮโดรเจนมากเกินพอของตัวเร่งปฏิกิริยาโลหะออกไซด์ผสมคอปเปอร์-ซีเรียม ตัวเร่งปฏิกิริยาถูกเตรียมด้วยวิธีโซลเจล กำหนดปริมาณคอปเปอร์ออกไซด์คงที่ที่ร้อยละ 40 และอลูมินาร้อยละ 6 9 12 และ 18 โดยนํ้าหนักตามลำดับ ที่เหลือเป็นซีเรียมออกไซด์ จากการวิเคราะห์คุณสมบัติของตัวเร่งปฏิกิริยาด้วยเครื่องเอ็กซเรย์ดิฟแฟรคชัน และการดูดซับก๊าซไนโตรเจนเชิงกายภาพพบว่า ปริมาณอลูมินามีผลต่อขนาดผลึกของโลหะออกไซด์ โดยขนาดผลึกของคอปเปอร์ออกไซด์และซีเรียมออกไซด์ ลดลงเพียงเล็กน้อยเมื่อปริมาณอลูมินาเพิ่มขึ้น ในขณะที่ค่าพื้นที่ผิวจำเพาะมีค่าสูงขึ้น โดยที่อัตราส่วนโดยนํ้าหนักของคอปเปอร์ออกไซด์:ซีเรียมออกไซด์:อลูมินาเป็น 40:48:12 ให้ค่าพื้นที่ผิวจำเพาะสูงสุดเป็น 170.4 ตารางเมตรต่อกรัม เมื่อทดสอบความสามารถในการเร่งปฏิกิริยาพบว่า ปริมาณอลูมินาที่เหมาะส่งผลดีต่อการเร่งปฏิกิริยา โดยตัวเร่งปฏิกิริยาที่มีปริมาณของอลูมินาร้อยละ 9 โดยน้ำหนัก แสดงความสามารถในการเร่งปฏิกิริยาการเผาไหม้ก๊าซคาร์บอนมอนอกไซด์ และปฏิกิริยาการเลือกเกิดการเผาไหม้ก๊าซ คาร์บอนมอนอกไซด์ในสภาวะที่มีก๊าซไฮโดรเจนมากเกินพอได้ดีที่สุด โดยค่าร้อยละการเปลี่ยนแปลงก๊าซคาร์บอนมอนอกไซด์มีค่าเท่ากับ 100 ที่อุณหภูมิ 140 - 180 องศาเซลเซียส และค่าร้อยละการเลือกเกิดปฏิกิริยาการเผาไหม้ก๊าซคาร์บอนมอนอกไซด์มีค่าเท่ากับ 86 ที่ 140 องศาเซลเซียส และร้อยละ 60 ที่ 180 องศาเซลเซียส

Article Details

รูปแบบการอ้างอิง
[1]
พุทธคุณ พ., สว่างกาญจน์ ค., วงศ์วรรณกานต์ ม., และ วงษ์แก้ว เ., “ผลกระทบของอลูมินาต่อการเร่งปฏิกิริยาการเลือกเผาไหม้ก๊าซคาร์บอนมอนอกไซด์ของโลหะออกไซด์ผสมคอปเปอร์-ซีเรียม”, RMUTI Journal, ปี 14, ฉบับที่ 1, น. 1–16, มี.ค. 2021.
ประเภทบทความ
บทความวิจัย

เอกสารอ้างอิง

Nepel, T. C. M., Lopes, P. P., Paganin, V. A., and Ticianelli, E. A. (2013). CO Tolerance of Proton Exchange Membrane Fuel Cells with Pt/C and PtMo/C Anodes Operating at High Temperatures: A Mass Spectrometry Investigation. Electrochimica Acta. Vol. 88, pp. 217-224. DOI: 10.1016/j.electacta.2012.10.039

Ayastuy, J. L., González-Marcos, M. P., Gonza´lez-Velasco, J. R., and Gutiérrez-Ortiz, M. A. (2007). MnOx/Pt/Al2O3 Catalysts for CO Oxidation in H2-Rich Streams. Applied Catalysis B: Environmental. Vol. 70, pp. 532-541

Liu, Y., Fu, Q., and Stephanopoulos, M. F. (2004). Preferential Oxidation of CO in H2 Over CuO-CeO2 Catalysts. Catalysis Today. Vol. 93-95, pp. 241-246. DOI: 10.1016/j.cattod.2004.06.049

Gamarra, D., Belver, C., Fernández-García, M., and Martínez-Arias, A. (2007). Selective CO Oxidation in Excess H2 Over Copper-Ceria Catalysts: Identifi cation of Active Entities/Species. Journal of the American Chemical Society. Vol. 129, pp. 12064-12065. DOI: 10.1021/ja073926g

Polster, C. S., Nair, H., and Baertsch, C. (2009). Study of Active Sites and Mechanism Responsible for Highly Selective CO Oxidation in H2 Rich Atmospheres on a Mixed Cu and Ce Oxide Catalyst. Journal of Catalysis. Vol. 266, Issue 2, pp. 308-319. DOI: 10.1016/j.jcat.2009.06.021

Bae, C. M., Ko, J. B., and Kim, D. H. (2005). Selective Catalytic Oxidation of Carbon Monoxide with Carbon Dioxide, Water Vapor and Excess Hydrogen on CuO-CeO2 Mixed Oxide Catalysts. Catalysis Communication.Vol. 6, Issue 8, pp. 507-511. DOI: 10.1016/j.catcom.2005.04.017

Cortés, A. G., Márquez, Y., Alatorre, J. A., and Díaz, G. (2008). Selective CO Oxidation in Excess of H2 Over High Surface Area CuO/CeO2 Catalysts. Catalysis Today. Vol. 133-135, pp. 743-749. DOI: 10.1016/j.cattod.2007.12.083

Wei, Z., Li, H., Zhang, X., Yan, S., Lv, Z., Chen, Y., and Gong, M. (2008). Preparation and Property Investigation of CeO2-ZrO2-Al2O3 Oxygen Storage Compounds. Journal of Alloys and Compounds. Vol. 455, pp. 322-326. DOI: 10.1016/j.jallcom.2007.01.060

Morikawa, A., Suzuki, T., Kanazawa, T., Kikuta, K., Suda, A., and Shinjo, H. (2008). A New Concept in High Performance Ceria-Zirconia Oxygen Storage Capacity Material with Al2O3 as a Diffusion Barrier. Applied Catalysis B: Environmental. Vol. 78, No. 3-4, pp. 210-221. DOI: 10.1016/j.apcatb.2007.09.013

Brinker, C. J. and Scherer, G. W. (1900). Sol-Gel: the Physic and Chemistry of Sol-Gel Processing. Elsevier’s Science and Technology Rights Department in Oxford UK.

Cauqui, M. A. and Rodríguez-Izquierdo, J. M. (1992). Application of the Sol-Gel Methods to Catalyst Preparation. Journal of Non-Crystalline Solids. Vol. 147–148, pp. 724-738. DOI: DOI:10.1016/S0022-3093(05)80707-0

Ward, D. A. and Ko, E. L. (1995). Preparing Catalytic Materials by the Sol-Gel Method. Industrial & Engineering Chemistry Research. Vol. 34, pp. 421-433. DOI: 10.1021/ie00041a001

Manasilp, A. and Gulari, E. (2002). Selective Oxidation of Pt/alumina Catalysts for Fuel Cell Applications. Applied Catalysis B: Environmental. Vol. 37, Issue 1, pp.17-25. DOI: 10.1016/S0926-3373(01)00319-8

Sreethawong, T., Suzuki, Y., and Yoshikawa, S. (2009). Platinum-Loaded Mesoporous Titania by Single-Step Sol-Gel Process with Surfactant Template: Photocatalytic Activity for Hydrogen Evolution. Comptes Rendus Chimie. Vol. 9, pp. 307-314. DOI: 10.1016/j.crci.2005.05.015

Hargreaves, J. S. J. (2016). Some Considerations Related to the use of the Scherrer Equation in Powder X-Ray Diffraction as Applied to Heterogeneous Catalysts. Catalysis, Structure & Reactivity. Vol. 2, Issue 2-4, pp. 33-37. DOI: 10.1080/2055074X.2016.1252548

Hernandez, R. P., Cortes, A. G., Alatorre, J. A., Rojas, S., Mariscal, R., Fierro, J. L. G., and Dıaz, G. (2005). SCR of NO by CH4 on Pt/ZrO2-TiO2 Sol-Gel Catalysts. Catalysis Today. Vol. 107-108, pp. 149-159. DOI: 10.1016/j.cattod.2005.07.080

Sing, K. S. W. and Williams, R. T. (2004). Physisorption Hysteresis Loops and the Characterization of Nanoporous Materials. Adsorption Science & Technology. Vol. 22, Issue 10, pp. 773-782. DOI: 10.1260/0263617053499032

Lou, M.-F., Ma, J.-M., Lu, J.-Q., Song, Y.-P., and Wang, Y.-J. (2007). High-Surface Area CuO-CeO2 Catalysts Prepared by a Surfactant-Templated Method for Low-Temperature CO Oxidation. Journal of Catalysis. Vol. 246, No. 1, pp. 52-59. DOI: 10.1016/j.jcat.2006.11.021

Fonseca, R. O., Rabelo-Neto, R. C., Simões, R. C. C., Mattos, L. V., and Noronha, F. B. (2020). Pt supported on doped CeO2/Al2O3 as Catalyst for Dry Reforming of Methane. International Journal of Hydrogen Energy. Vol. 45, Issue 8, pp. 5182-5191. DOI: 10.1016/j.ijhydene.2019.09.207

Chen, Y. Z., Liaw, B. J., Wang, J. M., and Huang, C. T. (2008). Selective Removal of CO from Hydrogen Rich Stream Over CuO/CexSn1-xO2-Al2O3 Catalysts. International Journal of hydrogen energy. Vol. 33, No. 9, pp. 2389-2399. DOI: 10.1016/j.ijhydene.2008.02.056

Lee, H. C. and Kim, D. H. (2008). Kinetics of CO and H2 Oxidation Over CuO-CeO2 Catalyst in H2 Mixtures with CO2 and H2O. Catalysis Today. Vol. 132, No. 1-4, pp 109-116. DOI: 10.1016/j.cattod.2007.12.028

Moretti, E., Lenarda, M., Storaro, L., Talon, A., Montanari, T., Busca G., Rodrıguez-Castellon, E., Jimenez-Lopez, A., Turco, M., Bagnasco, G., and Frattini, R. (2008). One-Step Synthesis of a Structurally Organized Mesoporous CuO-CeO2-Al2O3 System for the Preferential CO Oxidation. Applied Catalysis A: General. Vol. 335, Issue 1, pp. 46-55. DOI: 10.1016/j.apcata.2007.11.009

Mariño, F., Schönbrod, B., Moreno, M., Jobbágy, M., Baronetti, G., and Laborde, M. (2008). CO Preferential Oxidation Over CuO-CeO2 Catalysts Synthesized by the Urea Thermal Decomposition Method. Catalysis Today. Vol. 133-135, pp. 735-742. DOI: 10.1016/j.cattod.2007.12.019

Martínez-Arias, A., Hungría, A. B., Munuera, G., and Gamarra, D. (2006). Preferential Oxidation of CO in Rich H2 Over CuO/CeO2: Details of Selectivity and Deactivation Under the Reactant Stream. Applied Catalysis B: Environmental. Vol. 65, pp. 207-216. DOI: 10.1016/j.apcatb.2012.11.008