Synthesis and Antioxidant Activity of a Flavonol-Based Fluorescent Probe (3-hydroxy-2-(pyren-1-yl)-4H-chromen-4-one)

Main Article Content

Chuthamat Duangkamol
Pariyaporn Piasangka
Attaya Nontiwantok
Thanakorn Siriananmanee
Natapat Sahaphatsombut
Amolrada Sathin
Nachicha Wongapichart

Abstract

The purpose of this study was to investigate the absorption, emission properties, antioxidant activities, total phenolic compound, and total flavonoid contents of the flavonol-based fluorescent probe (3-hydroxy-2-(pyren-1-yl)-4H-chromen-4-one). The antioxidant activity was evaluated using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. Total phenolic content was also determined using Folin-Ciocalteau's reagent with gallic acid as a standard, as well as total flavonoid content using quercetin as a standard substance. The results found that flavonols have absorption properties. It has the highest absorbance at 355 nm and the highest emission at 418 nm (Ex 355 nm / Em 418 nm). Furthermore, synthetic flavonols were discovered to have antioxidant properties, with DPPH radicals showing a 44.7 % anti-oxidation value at 10 mg/mL. Total phenolic content and total flavonoids were 1.239±0.043 mgGAE/gDW and 1.312±0.014 mgCE/gDW. Therefore, synthetic flavonols exhibit antioxidant activity. The findings of this study can be used to develop new products as well as medical research.

Article Details

How to Cite
[1]
C. Duangkamol, “Synthesis and Antioxidant Activity of a Flavonol-Based Fluorescent Probe (3-hydroxy-2-(pyren-1-yl)-4H-chromen-4-one)”, RMUTI Journal, vol. 17, no. 2, pp. 31–44, Aug. 2024.
Section
Research article

References

Herrmann, K. (1976). Flavonols and Flavones in Food Plants: A Review. International Journal of Food Science & Technology. Vol. 11, Issue 5, pp. 433-448. DOI: 10.1111/j.1365-2621.1976.tb00743.x

Mahmud, A. R., Ema, T. I., Siddiquee, M. F.-R., Shahriar, A., Ahmed, H., Mosfeq-Ul-Hasan, M., Rahman, N., Islam, R., Uddin, M. R., and Mizan, M. F. R. (2023). Natural Flavonols: Actions, Mechanisms, and Potential Therapeutic Utility for Various Diseases. Beni-Suef University Journal of Basic and Applied Sciences. Vol. 12, p. 47. DOI: 10.1186/s43088-023-00387-4

Hollman, P. C. H. and Arts, I. C. W. (2000). Flavonols, Flavones and Flavanols-Nature, Occurrence and Dietary Burden. Journal of the Science of Food and Agriculture. Vol. 80, Issue 7, pp. 1081-1093. DOI: 10.1002/(SICI)1097-0010(20000515)80:7<1081::AID-JSFA566>3.0.CO;2-G

Şöhretoğlu, D. and Sari, S. (2020). Flavonoids as Alpha-Glucosidase Inhibitors: Mechanistic Approaches Merged with Enzyme Kinetics and Molecular Modelling. Phytochemistry Review. Vol. 19, Issue 5, pp. 1081-1092. DOI: 10.1007/s11101-019-09610-6

Gervasi, T., Calderaro, A., Barreca, D., Tellone, E., Trombetta, D., Ficarra, S., Smeriglio, A., Mandalari, G., and Gattuso, G. (2022). Biotechnological Applications and Health-Promoting Properties of Flavonols: An Updated View. International Journal of Molecular Sciences. Vol. 23, Issue 3, p. 1710. DOI: 10.3390/ijms23031710

Shen, N., Wang, T., Gan, Q., Liu, S., Wang, L., and Jin, B. (2022). Plant Flavonoids: Classification, Distribution, Biosynthesis, and Antioxidant Activity. Food Chemistry. Vol. 383, DOI: 10.1016/j.foodchem.2022.132531

Ojha, M. D., Yadav, A., and Hariprasad, P. (2023). Analyzing the Potential of Selected Plant Extracts and Their Structurally Diverse Secondary Metabolites for α-glucosidase Inhibitory Activity: in vitro and in silico Approach. Journal of Biomolecular Structure and Dynamics. Vol. 41, Issue 19, pp. 9523-9538. DOI: 10.1080/07391102.2022.2142847

Kumar, S. and Pandey, A. K. (2013). Phenolic Content, Reducing Power and Membrane Protective Activities of Solanum xanthocarpum Root Extracts. Vegetos. Vol. 26, Issue 1, pp. 301-307. DOI: 10.5958/j.2229-4473.26.1.043

Kumar, S. and Pandey, A. K. (2013). Chemistry and Biological Activities of Flavonoids: An Overview. The Scientific World Journal. Vol. 2013, Article ID 162750, pp. 1-16. DOI: 10.1155/2013/162750

Bouderias, S., Teszlák, P., Jakab, G., and Kőrösi, L. (2020). Age-and Season-Dependent Pattern of Flavonol Glycosides in Cabernet Sauvignon Grapevine Leaves. Scientific Reports. Vol. 10, Issue 1, Article Number 14241. DOI: 10.1038/s41598-020-70706-7

Liu, L., Gregan, S., Winefield, C., and Jordan, B. (2015). From UVR8 to Flavonol Synthase: UV-B-Induced Gene Expression in Sauvignon Blanc Grape Berry. Plant, Cell & Environment. Vol. 38, Issue 5, pp. 905-919. DOI: 10.1111/pce.12349

Gregan, S. M., Wargent, J. J., Liu, L., Shinkle, J., Hofmann, R., Winefield, C., Trought, M., and Jordan, B. (2012). Effects of Solar Ultraviolet Radiation and Canopy Manipulation on the Biochemical Composition of Sauvignon Blanc Grapes. Australian Journal of Grape and Wine Research. Vol. 18, Issue 2, pp. 227-238. DOI: 10.1111/j.1755-0238.2012.00192.x

Castillo-Muñoz, N., Gómez-Alonso, S., García-Romero, E., and Hermosín-Gutiérrez, I. (2007). Flavonol Profiles of Vitis vinifera Red Grapes and Their Single-Cultivar Wines. Journal of Agricultural and Food Chemistry. Vol. 55, Issue 3, pp. 992-1002. DOI: 10.1021/jf062800k

Pietta, P.-G. (2000). Flavonoids as Antioxidants. Journal of Natural Products. Vol. 63, Issue 7, pp. 1035-1042. DOI: 10.1021/np9904509

Agati, G., Azzarello, E., Pollastri, S., and Tattini, M. (2012). Flavonoids as Antioxidants in Plants: Location and Functional Significance. Plant Science. Vol. 196, pp. 67-76. DOI: 10.1016/j.plantsci.2012.07.014

Heim, K. E., Tagliaferro, A. R., and Bobilya, D. J. (2002). Flavonoid Antioxidants: Chemistry, Metabolism and Structure-Activity Relationships. The Journal of Nutritional Biochemistry. Vol. 13, Issue 10, pp. 572-584. DOI: 10.1016/S0955-2863(02)00208-5

Bondar, O. P., Pivovarenko, V. G., and Rowe, E. S. (1998). Flavonols-New Fluorescent Membrane Probes for Studying the Interdigitation of Lipid Bilayers. Biochimica et Biophysica Acta (BBA)-Biomembranes. Vol. 1369, Issue 1, pp. 119-130. DOI: 10.1016/S0005-2736(97)00218-6

Klymchenko, A. S., Ozturk, T., and Demchenko, A. P. (2002). Synthesis of Furanochromones: A New Step in Improvement of Fluorescence Properties. Tetrahedron Letters. Vol. 43, Issue 39, pp. 7079-7082. DOI: 10.1016/S0040-4039(02)01547-2

Chou, P. T., Martinez, M. L., and Clements, J. H. (1993). Reversal of Excitation Behavior of Proton-Transfer vs. Charge-Transfer by Dielectric Perturbation of Electronic Manifolds. The Journal of Physical Chemistry. Vol. 97, Issue 11, pp. 2618-2622

Pandey, A. K. (2007). Anti-Staphylococcal Activity of a Pan-Tropical Aggressive and Obnoxious Weed Parthenium Histerophorus: An in vitro Study. National Academy Science Letters. Vol. 30, Issue 11/12, 383-386.

Reszka, M., Serdiuk, I. E., Kozakiewicz, K., Nowacki, A., Myszka, H., Bojarski, P., and Liberek, B. (2020). Influence of a 4′-Substituent on the Efficiency of Flavonol-Based Fluorescent Indicators of β-Glycosidase Activity. Organic & Biomolecular Chemistry. Vol. 18, Issue 38, pp. 7635-7648

Sentchouk, V. and Bondaryuk, E. (2007). Fluorescent Analysis of Interaction of Flavonols with Hemoglobin and Bovine Serum Albumin. Journal of Applied Spectroscopy. Vol. 74, Issue 5, pp. 731-737. DOI: 10.1007/s10812-007-0117-5

Höfener, S., Kooijman, P. C., Groen, J., Ariese, F., and Visscher, L. (2013). Fluorescence Behavior of (Selected) Flavonols: A Combined Experimental and Computational Study. Physical Chemistry Chemical Physics. Vol. 30, pp. 12572-12581. DOI: 10.1039/C3CP44267E

Ameer-Beg, S., Ormson, S. M., Brown, R. G., Matousek, P., Towrie, M., Nibbering, E. T., Foggi, P., and Neuwahl, F. V. (2001). Ultrafast Measurements of Excited State Intramolecular Proton Transfer (ESIPT) in Room Temperature Solutions of 3-Hydroxyflavone and Derivatives. The Journal of Physical Chemistry A. Vol. 105, Issue 15, pp. 3709-3718. DOI: 10.1021/jp0031101

Ormson, S. M., Brown, R. G., Vollmer, F., and Rettig, W. (1994). Switching Between Charge-and Proton-Transfer Emission in the Excited State of a Substituted 3-Hydroxyflavone. Journal of Photochemistry and Photobiology A: Chemistry. Vol. 81, Issue 2, pp. 65-72. DOI: 10.1016/1010-6030(94)03778-7

Ameer-Beg, S., Ormson, S. M., Poteau, X., and Brown, R. G., Foggi, P., Bussotti, L., and Neuwahl, F. V. (2004). Ultrafast Measurements of Charge and Excited-State Intramolecular Proton Transfer in Solutions of 4 ‘-(N, N-dimethylamino) Derivatives of 3-Hydroxyflavone. The Journal of Physical Chemistry A. Vol. 108, Issue 34, pp. 6938-6943. DOI: 10.1021/Jp048512d

Doroshenko, A. O., Posokhov, E. A., Verezubova, A. A., and Ptyagina, L. M. (2000). Excited State Intramolecular Proton Transfer Reaction and Luminescent Properties of the Ortho‐Hydroxy Derivatives of 2, 5‐diphenyl‐1, 3, 4‐oxadiazole. Journal of Physical Organic Chemistry. Vol. 13, Issue 5, pp. 253-265. DOI: 10.1002/1099-1395(200005)13:5<253::AID-POC238>3.0.CO;2-D

Swinney, T. and Kelley, D. (1993). Proton Transfer Dynamics in Substituted 3‐Hydroxyflavones: Solvent Polarization Effects. The Journal of Chemical Physics. Vol. 99, Issue 1, pp. 211-221. DOI: 10.1063/1.465799

Tehfe, M.-A., Dumur, F., Xiao, P., Graff, B., Morlet-Savary, F., Fouassier, J.-P., Gigmes, D., and Lalevée, J. (2013). New Chromone Based Photoinitiators for Polymerization Reactions Under Visible Light. Polymer Chemistry. Vol. 4, Issue 15, pp. 4234-4244. DOI: 10.1039/C3PY00536D

Singsai, K., Sakdavirote, A., Wechpanishkitkul, K., and Moonsamai, A. (2020). The Comparison of Phenolic Compounds, Flavonoids and Antioxidant Activities of the Ethanolic Extracts of Shoots, Leaves, Fruits and Seeds of Leucaena Leucocephala. Naresuan Phayao Journal. Vol. 13, No. 3, pp. 66-73

Blainski, A., Lopes, G., and Mello, J. (2013). Application and Analysis of the Folin Ciocalteu Method for the Determination of the Total Phenolic Content from Limonium Brasiliense L. Molecules. Vol. 18, pp. 6852-6865. DOI: 10.3390/molecules18066852