An Investigation of Ice Formation Behavior in Vertical Annular Flow
DOI:
https://doi.org/10.55003/ETH.420404Keywords:
Tubular ice, Annular flow, Ice formationAbstract
This study investigates the ice formation behavior in an annular flow under initial flow velocities ranging from 0.20 to 0.45 m/s. The experiment was performed to validate the Computational Fluid Dynamics (CFD). The results indicate that lower flow velocities, 0.20-0.35 m/s, promote continuous ice growth leading to full the annular passage, whereas higher velocities, 0.40-0.45 m/s, suppress ice accumulation due to enhanced convective heat transfer and disruption of the mushy zone. Importantly, it was found that the ice growth rate decreases with increasing initial flow velocities. Furthermore, the correlations for predicting the ice thickness and ice growth rate with time as power functions were developed. The correlations agreed well with the simulation results. This information is very useful for design, and operating the tubular ice machines which has never found in literatures.
References
M. Kenisarin and K. Mahkamov, “Solar energy storage using phase change materials,” Renewable and Sustainable Energy Reviews, vol. 11, no. 9, pp. 1913–1965, 2007, doi: 10.1016/j.rser.2006.05.005.
A. M. Abdulateef, J. Abdulateef, S. Mat, K. Sopian, B. Elhub and M. A. Mussa, “Experimental and numerical study of solidifying phase-change material in a triplex-tube heat exchanger with longitudinal/triangular fins,” International Communications in Heat and Mass Transfer, vol. 90, pp. 73–84, 2018, doi: 10.1016/j.icheatmasstransfer.2017.10.003.
Kh. Hosseinzadeh, E. Montazer, M. B. Shafii and A. R. D. Ganji, “Solidification enhancement in triplex thermal energy storage system via triplets fins configuration and hybrid nanoparticles,” Journal of Energy Storage, vol. 34, 2021, Art. no. 102177, doi: 10.1016/j.est.2020.102177.
K. A. Aly, A. R. El-Lathy and M. A. Fouad, “Enhancement of solidification rate of latent heat thermal energy storage using corrugated fins,” Journal of Energy Storage, vol. 24, 2019, Art. no. 100785, doi: 10.1016/j.est.2019.100785.
A. Rozenfeld, Y. Kozak, T. Rozenfeld and G. Ziskind, “Experimental demonstration, modeling and analysis of a novel latent-heat thermal energy storage unit with a helical fin,” International Journal of Heat and Mass Transfer, vol. 110, pp. 692–709, 2017, doi: 10.1016/j.ijheatmasstransfer.2017.03.020.
F. Afsharpanah, S. S. Mousavi Ajarostaghi and M. Arıcı, “Parametric study of phase change time reduction in a shell-and-tube ice storage system with anchor-type fin design,” International Communications in Heat and Mass Transfer, vol. 137, 2022, Art. no. 106281, doi: 10.1016/j.icheatmasstransfer.2022.106281.
J. M. Mahdi, S. Lohrasbi, D. D. Ganji and E. C. Nsofor, “Accelerated melting of PCM in energy storage systems via novel configuration of fins in the triplex-tube heat exchanger,” International Journal of Heat and Mass Transfer, vol. 124, pp. 663–676, 2018, doi: 10.1016/j.ijheatmasstransfer.2018.03.095.
M. R. Hajizadeh, A. N. Keshteli and Q. -V. Bach, “Solidification of PCM within a tank with longitudinal-Y shape fins and CuO nanoparticle,” Journal of Molecular Liquids, vol. 317, 2020, Art. no. 114188, doi: 10.1016/J.MOLLIQ.2020.114188.
S. D. Farahani, A. D. Farahani, E. Hajian and H. F. Öztop, “Control of PCM melting process in an annular space via continuous or discontinuous fin and non-uniform magnetic field,” Journal of Energy Storage, vol. 55, 2022, Art. no. 105410, doi: 10.1016/j.est.2022.105410.
I. Sarani, S. Payan, S. A. Nada and A. Payan, “Numerical investigation of an innovative discontinuous distribution of fins for solidification rate enhancement in PCM with and without nanoparticles,” Applied Thermal Engineering, vol. 176, 2020, Art. no. 115017, doi: 10.1016/j.applthermaleng.2020.115017.
D. S. Mehta, K. Solanki, M. K. Rathod and J. Banerjee, “Thermal performance of shell and tube latent heat storage unit: Comparative assessment of horizontal and vertical orientation,” Journal of Energy Storage, vol. 23, pp. 344–362, 2019, doi: 10.1016/j.est.2019.03.007.
S. Seddegh, S. S. M. Tehrani, X. Wang, F. Cao and R. A. Taylor, “Comparison of heat transfer between cylindrical and conical vertical shell-and-tube latent heat thermal energy storage systems,” Applied Thermal Engineering, vol. 130, pp. 1349–1362, 2018, doi: 10.1016/j.applthermaleng.2017.11.130.
L. Li, H. Ma, F. Q. Si and K. P. Zhu, “Numerical Simulation on Solidification of Flow inside an Elliptical Pipe,” Applied Mechanics and Materials, vol. 799–800, pp. 751–755, 2015, doi: 10.4028/www.scientific.net/amm.799-800.751.
Y. B. Tao, Y. K. Liu and Y. L. He, “Effects of PCM arrangement and natural convection on charging and discharging performance of shell-and-tube LHS unit,” International Journal of Heat and Mass Transfer, vol. 115, pp. 99–107, 2017, doi: 10.1016/j.ijheatmasstransfer.2017.07.098.
M. R. Kadivar, M. A. Moghimi, P. Sapin and C. N. Markides, “Annulus eccentricity optimisation of a phase-change material (PCM) horizontal double-pipe thermal energy store,” Journal of Energy Storage, vol. 26, 2019, Art. no. 101030, doi: 10.1016/j.est.2019.101030.
M. S. Mahdi, H. B. Mahood, A. A. Alammar and A. A. Khadom, “Numerical investigation of PCM melting using different tube configurations in a shell and tube latent heat thermal storage unit,” Thermal Science and Engineering Progress, vol. 25, 2021, Art. no. 101030, doi: 10.1016/j.tsep.2021.101030.
J. R. Patel, M. K. Rathod and M. Sheremet, “Heat transfer augmentation of triplex type latent heat thermal energy storage using combined eccentricity and longitudinal fin,” Journal of Energy Storage, vol. 50, 2022, Art. no. 104167, doi: 10.1016/j.est.2022.104167.
A. Shahsavar, A. Shaham and P. Talebizadehsardari, “Wavy channels triple-tube LHS unit with sinusoidal variable wavelength in charging/discharging mechanism,” International Communications in Heat and Mass Transfer, vol. 107, pp. 93–105, 2019, doi: 10.1016/j.icheatmasstransfer.2019.05.012.
Kh. Hosseinzadeh, M. A. E. Moghaddam, A. Asadi, A. R. Mogharrebi and D. D. Ganji, “Effect of internal fins along with Hybrid Nano-Particles on solid process in star shape triplex Latent Heat Thermal Energy Storage System by numerical simulation,” Renewable Energy, vol. 154, pp. 497–507, 2020, doi: 10.1016/j.renene.2020.03.054.
X. Xiao, P. Zhang and M. Li, “Experimental and numerical study of heat transfer performance of nitrate/expanded graphite composite PCM for solar energy storage,” Energy Conversion and Management, vol. 105, pp. 272–284, 2015, doi: 10.1016/j.enconman.2015.07.074.
X. Huang, G. Alva, L. Liu and G. Fang, “Microstructure and thermal properties of cetyl alcohol/high density polyethylene composite phase change materials with carbon fiber as shape-stabilized thermal storage materials,” Applied Energy, vol. 200, pp. 19–27, 2017, doi: 10.1016/j.apenergy.2017.05.074.
S. A. Khan, H. E. Abdellatif, A. Belaadi, A. Arshad and H. Liu, “Numerical study of shell and tube thermal energy storage system: Enhancing solidification performance with single-walled carbon nanotubes in phase change material,” International Communications in Heat and Mass Transfer, vol. 160, 2025, Art. no. 108338, doi: 10.1016/j.icheatmasstransfer.2024.108338.
T. Qian, J. Li, W. Feng and H. Nian, “Single-walled carbon nanotube for shape stabilization and enhanced phase change heat transfer of polyethylene glycol phase change material,” Energy Conversion and Management, vol. 143, pp. 96–108, 2017, doi: 10.1016/j.enconman.2017.03.065.
R. M. Saeed, J. P. Schlegel, C. Castano and R. Sawafta, “Preparation and enhanced thermal performance of novel (solid to gel) form-stable eutectic PCM modified by nano-graphene platelets,” Journal of Energy Storage, vol. 15, pp. 91–102, 2018, doi: 10.1016/j.est.2017.11.003.
J. M. Mahdi, H. I. Mohammed, E. T. Hashim, P. Talebizadehsardari and E. C. Nsofor, “Solidification enhancement with multiple PCMs, cascaded metal foam and nanoparticles in the shell-and-tube energy storage system,” Applied Energy, vol. 257, 2020, Art. no. 113993, doi: 10.1016/j.apenergy.2019.113993.
Y. Xu, Q. Ren, Z. J. Zheng and Y. L. He, “Evaluation and optimization of melting performance for a latent heat thermal energy storage unit partially filled with porous media,” Applied Energy, vol. 193, pp. 84–95, 2017, doi: 10.1016/j.apenergy.2017.02.019.
Z. Liu, Y. Yao and H. Wu, “Numerical modeling for solid-liquid phase change phenomena in porous media: Shell-and-tube type latent heat thermal energy storage,” Applied Energy, vol. 112, pp. 1222–1232, 2013, doi: 10.1016/j.apenergy.2013.02.022.
G. Righetti, C. Zilio, G. A. Longo, K. Hooman and S. Mancin, “Experimental study on the effect of metal foams pore size in a phase change material based thermal energy storage tube,” Applied Thermal Engineering, vol. 217, 2022, Art. no. 119163, doi: 10.1016/j.applthermaleng.2022.119163.
S. Tiari, M. Mahdavi, V. Thakore and S. Joseph, “Thermal Analysis of a High-Temperature Heat Pipe-Assisted Thermal Energy Storage System With Nano-Enhanced Phase Change Material,” in ASME 2018 International Mechanical Engineering Congress and Exposition, Pittsburgh, PA, USA, Nov. 9–15, 2018, Paper IMECE2018-86481, doi: 10.1115/IMECE2018-86481.
N. Gupta, Am. Kumar, H. Dhasmana, V. Kumar, Av. Kumar, P. Shukla, A. Verma, G. V. Nutan, S. K. Dhawan and V. K. Jain, “Enhanced thermophysical properties of Metal oxide nanoparticles embedded magnesium nitrate hexahydrate based nanocomposite for thermal energy storage applications,” Journal of Energy Storage, vol. 32, 2020, Art. no. 101773, doi: 10.1016/j.est.2020.101773.
L. N. N., “Assessment of latent heat thermal storage systems operating with multiple phase change materials,” 2019, Journal of Energy Storage, vol. 23, pp. 442–455, 2019, doi: 10.1016/j.est.2019.04.008.
T. K. Aldoss and M. M. Rahman, “Comparison between the single-PCM and multi-PCM thermal energy storage design,” Energy Conversion and Management, vol. 83, pp. 79–87, 2014, doi: 10.1016/j.enconman.2014.03.047.
X. Cheng and X. Zhai, “Thermal performance analysis and optimization of a cascaded packed bed cool thermal energy storage unit using multiple phase change materials,” Applied Energy, vol. 215, pp. 566–576, 2018, doi: 10.1016/j.apenergy.2018.02.053.
Y. Tian and C. Y. Zhao, “Thermal and exergetic analysis of Metal Foam-enhanced Cascaded Thermal Energy Storage (MF-CTES),” International Journal of Heat and Mass Transfer, vol. 58, no. 1–2, pp. 86–96, 2013, doi: 10.1016/j.ijheatmasstransfer.2012.11.034.
C. R. E. S. Nóbrega, K. A. R. Ismail and F. A. M. Lino, “Solidification around axial finned tube submersed in PCM: Modeling and experiments,” Journal of Energy Storage, vol. 29, 2020, Art. no. 101438, doi: 10.1016/j.est.2020.101438.
M. Mahdaoui, T. Kousksou, J. M. Marín, T. El Rhafiki and Y. Zeraouli, “Laminar flow in circular tube with internal solidification of a binary mixture,” Energy, vol. 78, pp. 713–719, 2014, doi: 10.1016/j.energy.2014.10.062.
K. Pakzad, S. S. Mousavi Ajarostaghi and K. Sedighi, “Numerical simulation of solidification process in an ice-on-coil ice storage system with serpentine tubes,” SN Applied Sciences, vol. 1, no. 10, 2019, Art. no. 1258, doi: 10.1007/s42452-019-1316-4.
M. A. Kibria, M. R. Anisur, M. H. Mahfuz, R. Saidur and I. H. S. C. Metselaar, “Numerical and experimental investigation of heat transfer in a shell and tube thermal energy storage system,” International Communications in Heat and Mass Transfer, vol. 53, pp. 71–78, 2014, doi: 10.1016/j.icheatmasstransfer.2014.02.023.
M. K. Rathod and J. Banerjee, “Thermal performance enhancement of shell and tube Latent Heat Storage Unit using longitudinal fins,” Applied Thermal Engineering, vol. 75, pp. 1084–1092, 2015, doi: 10.1016/j.applthermaleng.2014.10.074.
K. A. R. Ismail, F. A. M. Lino, R. C. R. Da Silva, A. B. De Jesus and L. C. Paixão, “Experimentally validated two dimensional numerical model for the solidification of PCM along a horizontal long tube,” International Journal of Thermal Sciences, vol. 75, pp. 184–193, 2014, doi: 10.1016/j.ijthermalsci.2013.08.008.
M. Avci and M. Y. Yazici, “Experimental study of thermal energy storage characteristics of a paraffin in a horizontal tube-in-shell storage unit,” Energy Conversion and Management, vol. 73, pp. 271–277, 2013, doi: 10.1016/j.enconman.2013.04.030.
M. J. Hosseini, M. Rahimi and R. Bahrampoury, “Experimental and computational evolution of a shell and tube heat exchanger as a PCM thermal storage system,” International Communications in Heat and Mass Transfer, vol. 50, pp. 128–136, 2014, doi: 10.1016/j.icheatmasstransfer.2013.11.008.
A. J. Wheeler and A. R. Ganji, “Experimental Uncertainty Analysis,” in Introduction to Engineering Experimentation, 3rd ed. New Jersey, NJ, USA: Pearson Prentice Hall, 2004, ch. 7, sec. 7.2, pp. 199–202.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 School of Engineering, King Mongkut’s Institute of Technology Ladkrabang

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The published articles are copyrighted by the School of Engineering, King Mongkut's Institute of Technology Ladkrabang.
The statements contained in each article in this academic journal are the personal opinions of each author and are not related to King Mongkut's Institute of Technology Ladkrabang and other faculty members in the institute.
Responsibility for all elements of each article belongs to each author; If there are any mistakes, each author is solely responsible for his own articles.


