Parameters Determination of a-Si PV Module Equivalent Circuit Using Particle Swarm Optimization Coupled with Artificial Neural Network

Authors

  • หทัยชนก ทวิชัย
  • ปุณยภัทร ภูมิภาค

Keywords:

photovoltaic, equivalent circuit, particle swarm optimization, artificial neural network

Abstract

This paper proposes a method for parameters determination of amorphous silicon photovoltaic module equivalent circuit based on double diode model using particle swarm optimization (PSO). This paper presents the use of artificial neural network in order to evaluate the boundary of photovoltaic module optimal parameters using the manufacturer data i.e. maximum power, open circuit voltage, short circuit current, voltage and current which generated the maximum power under standard test condition (STC). In this proposed technique, the optimal parameters can be evaluated by comparing the performance of photovoltaic module obtained from the estimated parameters and the test data at operating conditions. The results indicate that the agreement between the optimal parameters and the parameters achieved from the test and manufacturer data validates the proposed method.

References

[1] V.V. Tyagi, Nurul A.A. Rahim , N.A. Rahim , Jeyraj A.L. Selvaraj, “Progress in solar PV technology : Research and achievement,” Renewable and Sustainable Energy Review, Vol.2, pp.443-461, 2013.
[2] Antonino Laudani, Francesco Riganti Fulginei, Alessandro Salvini, “Identification of the one-diode model for photovoltaic modules from datasheet values,” Solar Energy , Vol.108, pp.432–446, 2014.
[3] Gabriel Cibira, Marcela Koscocova, “Photovoltaic module parameters acquisition model,” Applied Surface Science, Vol.312, pp.74-80, 2014.
[4] Elbaset AA, Ali H, Abd-El Sattar, “Novel seven parameter model for photovoltaic modules,” Solar Energy Materials & Solar Cells, Vol.130, pp.442-455, 2014.
[5] Ali M.Humada, Mojgan Hojabri, Saad Mekhilef , Hussein M.Hamada, “Solar cell parameters extraction based on single and double-diode Models :A review,” Renewable and Sustainable Energy Reviews, Vol.56, pp.494–509, 2016.
[6] Marcelo Gradella Villalva, Jonas Rafael Gazoli and Ernesto Ruppert Filho. Modelling and Circuit-Based Simulation of Photovoltaic Arrays. Proceeding of Brazilian Power Electronics Conference, Sept 27 - Oct 1 2009 : 1244 – 1254.
[7] Sandrolini L, Artioli M and Reggiani U, “Numerical method for the extraction of photovoltaic module double-diode model parameters through cluster analysis,” Applied Energy, Vol.87, No.2, pp.442-451, 2010.
[8] I. Nassar-eddine, A. Obbadi, Y. Errami, A. El fajri, M. Agunaou, “Parameter estimation of photovoltaic modules using iterative method and the Lambert W function: A comparative study,” Energy Conversion and Management “Vol..119, pp.37-48, 2016.
[9] M.S. Ismail, M. Moghavvemi, T.M.I. Mahlia, “Characterization of PV panel and global optimization of its model parameters using genetic algorithm,” Energy Conversion and Management, Vol.73, pp.10-25, 2013.
[10] Ali Dali, Abderrezzak Bouharchouche, Said Diaf , “Parameter identification of photovoltaic cell/module using genetic algorithm (GA) and particle swarm optimization(PSO),” IEEE International Conference on Control, Engineering & Information Technology (CEIT), pp.1-6, 2015.
[11] Mohamed A. Awadallah, “Variations of the bacterial foraging algorithm for the extraction of PV module parameters from nameplate data,” Energy Conversion and Management,” Vol.113, pp.312–320, 2016.

Downloads

Published

2020-06-22

How to Cite

[1]
ทวิชัย ห. . . . and ภูมิภาค ป. . ., “Parameters Determination of a-Si PV Module Equivalent Circuit Using Particle Swarm Optimization Coupled with Artificial Neural Network”, Eng. & Technol. Horiz., vol. 34, no. 1, pp. 1–8, Jun. 2020.

Issue

Section

Academic Articles