Land Surface Temperature, Land Cover Spectral Indices, and Their Correlations, Nan Town Municipality and Adjacent Sub-Districts, Nan Province

Authors

  • Jiraporn Kulsoontornrat Major of Geographic Information Science, School of Information and Communication Technology, University of Phayao, Phayao, 56000
  • Phatcharaporn Sayamee Major of Geographic Information Science, School of Information and Communication Technology, University of Phayao, Phayao, 56000
  • Wipop Pangewangtong Major of Geographic Information Science, School of Information and Communication Technology, University of Phayao, Phayao, 56000
  • Nattapong Puangkaew Department of Geography, Faculty of Humanities and Social Sciences, Prince of Songkla University, Pattani Campus, Pattani, 94000

Keywords:

Land Surface Temperature, Land Cover Spectral Indices, Correlations, LST Variations, Landsat 8 (L2SP) imagery

Abstract

Land use and land cover changes exert a direct impact on land surface temperatures, significantly contributing to environmental and climate shifts in the region. In this study, Landsat 8 (L2SP) imagery was utilized for extracting land cover spectral indices and computing land surface temperature (LST) to analyze the relationships and explain the variation in land surface temperatures from 2014 to 2022 in the Nan municipality area and adjacent sub-districts. The results revealed a fluctuation in average land surface temperatures over 9 years. In the year of 2014, 2016, 2017, 2019, and 2021, land surface temperatures were lower than the average, whereas in 2015, 2018, 2020, and 2022, land surface temperatures were higher than the average. Correlation coefficients between land surface temperature and four land cover spectral indices, namely Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), Normalized Difference Built-Up Index (NDBI), and Modified Bare Soil Index (MBI), demonstrated moderate to very high relationships. Specifically, LST-NDVI exhibited a negative correlation, while LST and the other three land cover indices showed a positive correlation. Additionally, a simple linear regression equation reveals that NDVI can explain the decrease in land surface temperature, while NDWI, NDBI, and MBI can explain the increase in land surface temperature. The results obtained from this analysis indicate the impact of changes in land cover, influencing both the increase and decrease in land surface temperatures.

References

ศูนย์เทคโนโลยีสารสนเทศและการสื่อสาร กรมส่งเสริมการเกษตร. (2559). ข้าว. จาก http://www.agriinfo.doae.go.th/year59/plant/rortor/rice.pdf.

ศูนย์ประสานงานและพัฒนางานวิจัยด้านโลกร้อนและการเปลี่ยนแปลงสภาพภูมิอากาศ. (2564). ปรากฏการณ์ ENSO (เอลนีโญและลานีญา). กรุงเทพฯ: บัณฑิตวิทยาลัยร่วมด้านพลังงานและสิ่งแวดล้อม มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี.

ศูนย์ภูมิอากาศ กรมอุตุนิยมวิทยา. (2566). สถิติภูมิอากาศคาบ 30 ปี พ.ศ. 2534 ถึง 2563. จาก http://climate.tmd.go.th/statistic/stat30y.

ศูนยภูมิอากาศ กองพัฒนาอุตุนิยมวิทยา กรมอุตุนิยมวิทยา. (2564). ลักษณะอากาศประจำถิ่นของประเทศไทยเดือนกุมภาพันธ์ คาบ 70 ปี (พ.ศ. 2494-2563). จาก http://climate.tmd.go.th/content/file/1862.

สมศรี บุญเรือง และ อำนาจ จันทร์ครุฑ. (2551). คู่มือนักวิชาการส่งเสริมการเกษตร ข้าวโพด. กรุงเทพฯ: สำนักส่งเสริมและจัดการสินค้าเกษตร, กรมส่งเสริมการเกษตร, 56.

สำนักงานประชาสัมพันธ์จังหวัดน่าน. (2561) น่านเศรษฐกิจ คึกคัก เปิดโรงแรม ต้อนการท่องเที่ยว ทำให้นักลงทุน ผู้ประกอบการ ขยายตัวเศรษฐกิจ ด้านโรงแรมเพิ่มขึ้น ในการรองรับการท่องเที่ยว. จาก https://nbtworld.prd.go.th/th/news/detail/TNSOC6102260010080.

หอศิลปวัฒนธรรม เมืองน่าน. (2562). บริบทของเมืองเก่าน่าน. จาก https://nan-acc.com/บริบทของเมืองเก่าน่าน/.

Abir, F. A., & Saha, R. (2021). Assessment of land surface temperature and land cover variability during winter: A spatio-temporal analysis of Pabna municipality in Bangladesh. Environmental Challenges, 4, 100167.

Anbazhagan, S., & Paramasivam, C. R. (2016). Statistical correlation between land surface temperature (LST) and vegetation index (NDVI) using multi-temporal landsat TM data. International Journal of Advanced Earth Science and Engineering, 5(1), 333-346.

Akomolafe, G. F., & Rosazlina, R. (2022). Land use and land cover changes influence the land surface temperature and vegetation in Penang Island, Peninsular Malaysia. Scientific Reports, 12(1), 21250. doi:10.1038/s41598-022-25560-0.

Ayanlade, A., Aigbiremolen, M. I., & Oladosu, O. R. (2021). Variations in urban land surface temperature intensity over four cities in different ecological zones. Scientific Reports, 11(1), 20537.

Barry, R. G. (2019). Evaporation and transpiration. Water, Earth.

Carrasco, R. A., Pinheiro, M. M. F., Junior, J. M., Cicerelli, R. E., Silva, P. A., Osco, L. P., & Ramos, A. P. M. (2020). Land use/land cover change dynamics and their effects on land surface temperature in the western region of the state of São Paulo, Brazil. Regional Environmental Change, 20, 1-12.

Chakraborty, S. D., Kant, Y., & Mitra, D. (2015). Assessment of land surface temperature and heat fluxes over Delhi using remote sensing data. Journal of environmental management, 148, 143-152.

Chen, L., Li, M., Huang, F., & Xu, S. (2013, December). Relationships of LST to NDBI and NDVI in Wuhan City based on Landsat ETM+ image. 2013 6th international congress on image and signal processing (CISP) (840-845). IEEE.

Chen, X., & Zhang, Y. (2017). Impacts of urban surface characteristics on spatiotemporal pattern of land surface temperature in Kunming of China. Sustainable Cities and Society, 32, 87-99.

Falahatkar, S., Hosseini, S. M., & Soffianian, A. R. (2011). The relationship between land cover changes and spatial-temporal dynamics of land surface temperature. Indian Journal of Science and Technology, 4(2), 76-81.

Fathian, F., Prasad, A., Dehghan, Z., & Eslamian, S. (2015). Influence of land use/land cover change on land surface temperature using RS and GIS techniques. International Journal of Hydrology Science and Technology, 5(3), 195-207.

Gartland, L. M. (2012). Heat islands: understanding and mitigating heat in urban areas. Routledge.

Guechi, I., Gherraz, H., & Alkama, D. (2021). Correlation analysis between biophysical indices and Land Surface Temperature using remote sensing and GIS in Guelma city (Algeria). Bulletin de la Société Royale des Sciences de Liège.

Guha, S., Govil, H., & Besoya, M. (2020). An investigation on seasonal variability between LST and NDWI in an urban environment using Landsat satellite data. Geomatics, Natural Hazards and Risk, 11(1), 1319-1345.

Guha, S., & Govil, H. (2021). Seasonal variability of LST-NDVI correlation on different land use/land cover using Landsat satellite sensor: a case study of Raipur City, India. Environment, Development and Sustainability, 1-17.

Hua, A. K., & Ping, O. W. (2018). The influence of land-use/land-cover changes on land surface temperature: a case study of Kuala Lumpur metropolitan city. European Journal of Remote Sensing, 51(1), 1049-1069.

Hulley, G. C., Ghent, D., Göttsche, F. M., Guillevic, P. C., Mildrexler, D. J., & Coll, C. (2019). 3 - Land Surface Temperature. In G. C. Hulley & D. Ghent (Eds.), Taking the Temperature of the Earth (pp. 57-127). Elsevier.

Jain, S., Sannigrahi, S., Sen, S., Bhatt, S., Chakraborti, S., & Rahmat, S. (2020). Urban heat island intensity and its mitigation strategies in the fast-growing urban area. Journal of Urban Management, 9(1), 54-66.

Jamei, Y., Rajagopalan, P., & Sun, Q. C. (2019). Spatial structure of surface urban heat island and its relationship with vegetation and built-up areas in Melbourne, Australia. Science of the total environment, 659, 1335-1351.

Malik, M. S., Shukla, J. P., & Mishra, S. (2019). Relationship of LST, NDBI and NDVI using landsat-8 data in Kandaihimmat watershed, Hoshangabad, Indian Journal of Geo Marine Sciences, 48(1), 25-31.

Marzban, F., Sodoudi, S., & Preusker, R. (2018). The influence of land-cover type on the relationship between NDVI–LST and LST-T air. International Journal of Remote Sensing, 39(5), 1377-1398.

McFeeters, S. K. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International journal of remote sensing, 17(7), 1425-1432.

Mohajerani, A., Bakaric, J., & Jeffrey-Bailey, T. (2017). The urban heat island effect, its causes, and mitigation,

with reference to the thermal properties of asphalt concrete. Journal of environmental management, 197, 522-538.

Nguyen, C. T., Chidthaisong, A., Kieu Diem, P., & Huo, L. Z. (2021). A modified bare soil index to identify bare land features during agricultural fallow-period in southeast Asia using Landsat 8. Land, 10(3), 231.

Nuruzzaman, M. (2015). Urban heat island: causes, effects and mitigation measures-a review. International Journal of Environmental Monitoring and Analysis, 3(2), 67-73.

Polydoros, A., Mavrakou, T., & Cartalis, C. (2018). Quantifying the trends in land surface temperature and surface urban heat island intensity in mediterranean cities in view of smart urbanization. Urban science, 2(1), 16.

Putra, R. P., Agustina, R. D., Qurratu’Aini, K., & Adwasyifa, K. (2022). Analysis of Vegetation Density and Surface Temperature in Buahbatu District, Bandung using Landsat 8 Oli/Tirs Satellite Images. Jurnal Fisika dan Aplikasinya, 18(3), 63-68.

Richard, G., & Cellier, P. (1998). Effect of tillage on bare soil energy balance and thermal regime: an experimental study. Agronomie, 18(3), 163-181.

Rouse, J. W., Haas, R. H., Schell, J. A., & Deering, D. W. (1974). Monitoring vegetation systems in the Great Plains with ERTS. NASA Spec. Publ, 351(1), 309.

Shoukat Ali Shah. (2022). Statistical Analysis of Land Surface Temperature and Normalized Difference Vegetation Index Relationship Based on Remote Sensing. Journal of Agriculture and Aquaculture 4(3).

Singh, V. D., Ali, S. R., & Piyoosh, A. K. (2022, 16-17 Dec. 2022). A Review on the Relationship between LULC and LST using Geospatial Technologies. Paper presented at the 2022 11th International Conference on System Modeling & Advancement in Research Trends (SMART).

Sun, D., & Pinker, R. T. (2003). Estimation of land surface temperature from a Geostationary Operational Environmental Satellite (GOES‐8). Journal of geophysical research: atmospheres, 108(D11).

Tran, D. X., Pla, F., Latorre-Carmona, P., Myint, S. W., Caetano, M., & Kieu, H. V. (2017). Characterizing the relationship between land use land cover change and land surface temperature. ISPRS Journal of Photogrammetry and Remote Sensing, 124, 119-132.

Ullah, S., Tahir, A. A., Akbar, T. A., Hassan, Q. K., Dewan, A., Khan, A. J., & Khan, M. (2019). Remote sensing-based quantification of the relationships between land use land cover changes and surface temperature over the Lower Himalayan Region. Sustainability, 11(19), 5492.

U.S. Geological Survey. (2021). Landsat Collection 2 Level-2 Science Products: U.S. Geological Survey Fact Sheet 2021–3055. accessed on June 23, 2023, form https://pubs.usgs.gov/fs/2021/3055/fs20213055.pdf.

U.S. Geological Survey. (2023). Landsat 8–9 Collection 2 (C2) Level 2 Science Product (L2SP) Guide. LSDS-1619 Version 5.0. Date June 29, 2023, form https://d9-wret.s3.us-west-2.amazonaws.com/assets/palladium/production/s3fs-public/media/files/LSDS-1619_Landsat8-9-Collection2-Level2-Science-Product-Guide-v5.pdf.

Zha, Y., Gao, J., & Ni, S. (2003). Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. International journal of remote sensing, 24(3), 583-594.

Downloads

Published

2024-02-06

Issue

Section

Research Articles