Follow-up study of aircraft parameter estimation for lateral dynamics using self-adaptive teaching-learning based optimization with acceptance probability
Main Article Content
Abstract
This paper is a follow-up on using self-adaptive teaching-learning based optimization with an acceptance probability (SATLBO-AP), tailored specifically for aircraft parameter estimation, and extended to aircraft lateral dynamics, previously tested for aircraft longitudinal dynamics. The lateral dynamic is more complicated than the longitudinal with additional parameters, input and output. Since the problem has changed, the performance of SATLABO-AP requires reevaluation. Thus, a comparison between newly developed algorithms and recently proposed algorithms is conducted. The problem setup is carried out in a way similar to earlier work, but with a lateral dynamic. The results show that SATLBO-AP outperforms other algorithms in terms of convergence and consistency regarding noise level added to the validation signal.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Blake WB. Prediction of fighter aircraft dynamic derivatives using Digital Datcom. AIAA 3rd Applied Aerodynamics Conference; 1985 Oct 14-16; Colorado, United States. New York: AIAA; 1985. p. 1-8.
Drela M, Youngren H. Athena vortex lattice (AVL). Computer software AVL [Internet]. 2008 [cited 2024 Sep 28]. Available from: https://web.mit.edu/drela/Public/web/avl/.
Wendt JF. Computational fluid dynamics. 3rd ed. Berlin: Springer; 2009.
Peyada NK, Sen A, Ghosh AK. Aerodynamic characterization of HANSA-3 aircraft using equation error, maximum likelihood and filter error methods. Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol IIIMECS 2008; 2008 Mar 19-21; Hong Kong. Hong Kong: IAENG; 2008. p. 1-6.
Morelli EA. Practical aspects of the equation-error method for aircraft parameter estimation. AIAA Atmospheric Flight Mechanics Conference; 2006 Aug 21-24; Keystone, United States. Virginia: AIAA; 2006. p. 1-18.
Olkkonen JT, Olkkonen H. Least squares matrix algorithm for state-space modelling of dynamic systems. J Signal Inf Process. 2011;2(4):287-91.
Kamali C, Pashilkar AA, Raol JR. Evaluation of recursive least squares algorithm for parameter estimation in aircraft real time applications. Aerosp Sci Technol. 2011;15(3):165-74.
Jategaonkar RV, Plaetschke E. Algorithms for aircraft parameter estimation accounting for process and measurement noise. J Aircr. 1989;26(4):360-72.
Góes LCS, Hemerly EM, De Oliveira MacIel BC, Neto WR, Mendonca CB, Hoff J. Aircraft parameter estimation using output-error methods. Inverse Probl Sci Eng. 2006;14(6):651-64.
Grauer JA, Boucher MJ. Identification of aeroelastic models for the X-56A longitudinal dynamics using multisine inputs and output error in the frequency domain. Aerospace. 2019;6(2):24.
Majeed M, Singh J. Frequency and time domain recursive parameter estimation for a flexible aircraft. IFAC Proc Vol. 2013;46(19):453-8.
Campbell ME, Brunke S. Nonlinear estimation of aircraft models for on-line control customization. 2001 IEEE Aerospace Conference Proceedings; 2001 Mar 10-17; Big Sky, USA. USA: IEEE; 2001. p. 621-8.
Kallapur AG, Anavatti SG. UAV linear and nonlinear estimation using extended Kalman filter. 2006 International Conference on Computational Inteligence for Modelling Control and Automation and International Conference on Intelligent Agents Web Technologies and International Commerce (CIMCA'06); 2006 Nov 28 – Dec 1; Sydney, Australia. USA: IEEE; 2006. p. 1-5.
Chowdhary G, Jategaonkar R. Aerodynamic parameter estimation from flight data applying extended and unscented Kalman filter. Aerosp Sci Technol. 2010;14(2):106-17.
Singh S, Ghosh AK. Estimation of lateral-directional parameters using neural networks based modified delta method. Aeronaut J. 2007;111(1124):659-67.
Raisinghani SC, Ghosh AK. Parameter estimation of an aeroelastic aircraft using neural networks. Sadhana. 2000;25(2):181-91.
Peyada NK, Ghosh AK. Aerodynamic parameter estimation using new filtering technique based on neural network and gauss-newton method. 6th National Seminar on Aerospace & Related Mechanisms (ARMS 2008); 2008 Mar 28-29; Pune, India. Pune: ARDE; 2008. p. 243-52.
Li X, Yin M. Parameter estimation for chaotic systems by hybrid differential evolution algorithm and artificial bee colony algorithm. Nonlinear Dyn. 2014;77(1-2):61-71.
Ghosh Roy A, Peyada NK. Aircraft parameter estimation using Hybrid Neuro Fuzzy and Artificial Bee Colony optimization (HNFABC) algorithm. Aerosp Sci Technol. 2017;71:772-82.
Sun J, Garibaldi JM, Hodgman C. Parameter estimation using metaheuristics in systems biology: a comprehensive review. IEEE/ACM Trans Comput Biol Bioinform. 2012;9(1):185-202.
Jiang H, Wang J, Wu J, Geng W. Comparison of numerical methods and metaheuristic optimization algorithms for estimating parameters for wind energy potential assessment in low wind regions. Renew Sustain Energy Rev. 2017;69:1199-217.
Çanakoǧlu AI, Yetgin AG, Temurtaş H, Turan M. Induction motor parameter estimation using metaheuristic methods. Turk J Electr Eng Comput Sci. 2014;22(5):1177-92.
Rao RV, Savsani VJ, Vakharia DP. Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems. CAD Comput Aided Des. 2011;43(3):303-15.
Wichapong K, Bureerat S, Pholdee N. Solving inverse kinematics of robot manipulators by means of meta-heuristic optimisation. IOP Conf Ser Mater Sci Eng. 2018;370(1):012056.
Li S, Gong W, Yan X, Hu C, Bai D, Wang L, et al. Parameter extraction of photovoltaic models using an improved teaching-learning-based optimization. Energy Convers Manag. 2019;186:293-305.
Kanokmedhakul Y, Panagant N, Bureerat S, Pholdee N, Yildiz AR. Aircraft control parameter estimation using self-adaptive teaching-learning-based optimization with an acceptance probability. Comput Intell Neurosci. 2021;2021:4740995.
Mirjalili S. The ant lion optimizer. Adv Eng Softw. 2015;83:80-98.
Mirjalili S. Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput Appl. 2016;27(4):1053-73.
Saremi S, Mirjalili S, Lewis A. Grasshopper optimisation algorithm: theory and application. Adv Eng Softw. 2017;105:30-47.
Mirjalili S, Mirjalili SM, Lewis A. Grey wolf optimizer. Adv Eng Softw. 2014;69:46-61.
Mirjalili S. Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowledge-Based Syst. 2015;89: 228-49.
Mirjalili S, Mirjalili SM, Hatamlou A. Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Comput Appl. 2016;27(2):495-513.
Mirjalili S. SCA: a sine cosine algorithm for solving optimization problems. Knowledge-Based Syst. 2016;96:120-33.
Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM. Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw. 2017;114:163-91.
Eskandar H, Sadollah A, Bahreininejad A, Hamdi M. Water cycle algorithm - a novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput Struct. 2012;110-111:151-66.
Mirjalili S, Lewis A. The whale optimization algorithm. Adv Eng Softw. 2016;95:51-67.
Qin AK, Suganthan PN. Self-adaptive differential evolution algorithm for numerical optimization. 2005 IEEE congress on evolutionary computation; 2005 Sep 2-5; Edinburgh, UK. USA: IEEE; 2005. p. 1785-91.
Sallam KM, Elsayed SM, Chakrabortty RK, Ryan MJ. Improved multi-operator differential evolution algorithm for solving unconstrained problems. 2020 IEEE Congress on Evolutionary Computation (CEC); 2020 Jul 19-24; Glasgow, UK. USA: IEEE; 2020. p. 1-8.
Bureerat S, Sleesongsom S. Constraint handling technique for four-bar linkage path generation using self-adaptive teaching–learning-based optimization with a diversity archive. Eng Optim. 2020;53(3):513-30.
Bureerat S, Pholdee N. Inverse problem based differential evolution for efficient structural health monitoring of trusses. Appl Soft Comput. 2018;66:462-72.
Sleesongsom S, Bureerat S. Four-bar linkage path generation through self-adaptive population size teaching-learning based optimization. Knowledge-Based Syst. 2017;135:180-91.