An elementary survey on structural, electrical, and optical properties of perovskite materials

Main Article Content

Bijayalaxmi Kuanar
Hari S. Mohanty
Dhrubananda Behera
Priyambada Nayak
Biswajit Dalai

Abstract

The paper is aimed to study the recent progress on lead-free piezoelectric materials, focusing on synthesis and various properties such as structural, electrical and optical of them. Lead zirconate titanate (Pb (ZrxTi1-x) O3, PZT) and its associated solid solutions are extensively used in several memory devices, sensors, actuators, and transducers in this era. The toxic nature of lead (or lead oxide) creates health and environmental problems. With the environmental concerns, researchers are very much interested in finding out environmental-friendly lead-free materials, which can substitute the said toxic materials with the same industrial applications with high-efficiency situations. Various classes of materials are now under investigation by several researchers, considered as highly potential alternatives to the above said toxic materials. The perovskite structures such as pure Bismuth Sodium Titanate (BNT), its binary and ternary solid solution systems along with their structural, electrical, and optical properties are reviewed in this paper. The observation reveals that various lead-free material compositions illustrate stability in piezoelectric results, even if it is not matching completely with the performance of lead-based material. It motivates active research on this subject matter, i.e., lead-free materials to overcome lead-based materials, cited herewith. This has stimulated us to analyze the function of lead-free material with a vision that it would provide further ignition for a wide range of industrial applications to modern scientists, continuing research in this field.

Article Details

How to Cite
Kuanar, B. ., Mohanty, H. S. ., Behera, D. ., Nayak, P. ., & Dalai, B. . (2021). An elementary survey on structural, electrical, and optical properties of perovskite materials. Engineering and Applied Science Research, 49(2), 288–299. Retrieved from https://ph01.tci-thaijo.org/index.php/easr/article/view/245632
Section
REVIEW ARTICLES

References

Awan MQ, Ahmad J, Noren L, Lu T, Liu Y. Structure, dielectric and ferroelectric properties of lead free (K, Na) (Nb)O3-xBiErO3 piezoelectric ceramics. J Mater Sci Mater Electron. 2018;29(9):7142-51.

Hussain A, Sinha N, Dhankhar K, Joseph A, Kumar B. Giant piezoelectric behavior in relaxor ferroelectric environment friendly Na0.52K0.44 Li0.04Nb0.84Ta0.10Sb0.06O3 ceramics for high temperature applications. J Mater Sci Mater Electron. 2018;29(8):6403-11.

Barick BK, Choudhary RN, Pradhan DK. Dielectric and impedance spectroscopy of zirconium modified (Na0. 5Bi0. 5) TiO3 ceramics. Ceram Int. 2013;39(5):5695-04.

Reichmann K, Feteira A, Li M. Bismuth sodium titanate-based materials for piezoelectric actuators. Materials. 2015;8(12):8467-95.

Li S, Liu J, Guo T, Dong W, Bi K, Luo Y. Piezoelectricity and flexoelectricity of sodium bismuth titanate-based ceramics. Ceram Int. 2020;46:2049-54.

Pal V, Dwivedi RK, Thakur OP. Dielectric and ferroelectric properties of lead-free [1-{(Bi1-xLax)0.5(Na1-yLiy)0.5TiO3}-zBaTiO3] ceramic system. Adv Mater Sci Eng. 2013;2013:125634.

Anem S, Rao KS, Rao KH. Investigation of lanthanum substitution in lead-free BNBT ceramics for transducer applications. Ceram Int. 2016;42(14):15319-26.

Okayasu M, Sato Y, Takasu S, Mizuno M, Shiraishi T. Material properties of bismuth layered ferroelectrics and lead zirconate titanate piezoelectric ceramics. Ceram Int. 2013;39:3301-6.

Perumal RN, Athikesavan V, Nair P. Influence of lead titanate additive on the structural and electrical properties of Na0.5Bi0.5TiO3-SrTiO3 piezoelectric ceramics. Ceram Int. 2018;44(11):13259-66.

Babu MVG, Bagyalakshmi B, Giridharan NV, Duraisamy D, Balasubramanian S. Coexistence of ferroelectric phases and electric field induced structural transformation in sodium potassium bismuth titanate ceramics. J Appl Phys. 2018;123(3):234101.

Kornpom C, Chootin S, Bongkarn T. Enhancing piezoelectric of d33 coefficient of new (1-x) BNKLLT-xNKLNST lead-free ceramics synthesized by the solid state combustion technique. Integrated Ferroelectrics Int J. 2017;177(1):121-30.

Barick BK, Mishra K, Arora A, Choudhary R, Pradhan D. Impedance and Raman spectroscopic studies of (Na0.5Bi0.5) TiO3. J Phys Appl Phys. 2011;44:355402.

Barick BK, Choudhary R, Pradhan D. Phase transition and electrical properties of lanthanum-modified sodium bismuth titanate. Mater Chem Phys. 2012;132:1007.

Mohanty HS, Dam T, Borkar H, Kumar A, Mishra KK, Sen S, et al. Studies of ferroelectric properties and leakage current behaviour of microwave sintered ferroelectric Na0. 5Bi0. 5TiO3 ceramic. Ferroelectrics. 2017;517(1):25-33.

Bajpai KK, Sreenivas K, Gupta AK, Shukla AK. Cr-doped lead lanthanum zirconate titanate (PLZT) ceramics for pyroelectric and energy harvesting device applications. Ceram Int. 2019;45(11):14111-20.

Hiruma Y, Imai Y, Watanabe Y, Nagata H, Takenaka T. Large electrostrain near the phase transition temperature of (Bi0.5Na0.5)TiO3-SrTiO3 ferroelectric ceramics. Appl Phys Lett. 2008;92(26):262904.

Zhu Y, Zhou H, Sun D. Bipolar and unipolar fatigue property in Bi0.5Na0.5TiO3-Bi0.5K0·5 TiO3-SrTiO3 lead-free piezoelectric ceramics. Phys B Condens Matter. 2019;575:411716.

Lian HL, Shao XJ, Chen XM. Structure and electrical properties of Ca2+-doped (Na0.47Bi0.47 Ba0.06) TiO3 lead-free piezoelectric ceramics. Ceram Int. 2018;44(10):11320-30.

Acosta M, Liu N, Deluca M, Heidt S, Ringl I, Dietz C, et al. Tailoring ergodicity through selective a-site doping in the Bi1/2Na1/2TiO3-Bi1/2K1/2TiO3 system. J Appl Phys. 2015;117(13):134106.

Groh C, Jo W, Rodel J. Frequency and temperature dependence of actuating performance of Bi1/2Na1/2TiO3-BaTiO3 based relaxor/ferroelectric composites. J Appl Phys. 2014;115(23):234107.

Cho JH, Jeong YH, Nam JH, Yun JS, Park YJ. Phase transition and piezoelectric properties of lead-free (Bi1/2Na1/2) TiO3-BaTiO3 ceramics. Ceram Int. 2014;40(6):8419-25.

Dash SK, Kant S, Dalai B, Swain MD, Swain BB. Characterization and dielectric properties of barium zirconium titanate prepared by solid state reaction and high energy ball milling processes. Indian J Phys. 2014;88(2):129-35.

Haertling GH. Ferroelectric ceramics: history and technology. J Am Ceram Soc. 1999;82(4):797-18.

Panda PK. Environmental friendly lead-free piezoelectric materials. J Mater sci. 2009;44:5049-62.

Lei N, Zhu M, Yang P, Wang L, Wang L, Hou Y, et al. Effect of lattice occupation behavior of Li+ cations on microstructure and electrical properties of (Bi1/2Na1/2) TiO3-based lead-free piezoceramics. J Appl Phys. 2011;109(5):054102.

Xie Z, Gui Z, Li L, Su T, Huang Y. Microwave sintering of lead-based relaxor ferroelectric ceramics. Mater Lett. 1998;36(1-4):191-4.

Badapanda T, Venkatesan S, Panigrahi S, Kumar P. Structure and dielectric properties of bismuth sodium titanate ceramic prepared by auto-combustion technique. Process Appl Ceram. 2013;7(3):135-41.

Szeremeta A, Lazar I, Molak A, Gruszka I, Koperski J, Soszynski A, et al. Improved piezoelectric properties of Pb(Zr0·70Ti0.30)O3 ceramics doped with non-polar bismuth manganite. Ceram Int. 2019;45(15):18363-70.

Mohanty HS, Dam T, Borkar H, Pradhan DK, Mishra KK, Kumar A, et al. Structural transformations and physical properties of (1-x) Na0.5Bi0.5TiO3-xBaTiO3 solid solutions near a morphotropic phase boundary. J Phys Condens Matter. 2018;31(7):075401.

Du H, Zhou W, Luo F, Zhu D, Qu S, Pei Z. An approach to further improve piezoelectric properties of (K0.5Na0.5) NbO3-based lead-free ceramics. Appl Phys Lett. 2007;91(20):202907.

Mohanty HS, Kumar A, Sahoo B, Kurliya PK, Pradhan DK. Impedance spectroscopic study on microwave sintered (1-x) Na0.5Bi0.5TiO3-xBaTiO3 ceramics. J Mater Sci Mater Electron. 2018;29(8):6966-77.

Kornphom C, Rittisak J, Laowanidwatana A, Bongkarn T. Enhanced dielectric and ferroelectric behavior in 0.94 BNT-0.06 BCTS lead free piezoelectric ceramics synthesized by the solid state combustion technique. Integrated Ferroelectrics Int J. 2018;187(1):20-32.

Ullah A, Ullah A, Ullah M, Zeb A, Khan Z, Ikram M, et al. Dielectric, ferroelectric, and strain properties of lead-free (1-y)BNT-y ST ceramics. J Mater Sci Mater Electron. 2020;31(6):5667-73.

Cui W, Wang X, Li L. Large piezoelectric properties of (1-x) Na0.5Bi0.5TiO3-xBaTiO3 thin films prepared by sol-gel method. J Mater Sci Mater Electron. 2016;27(7):7287-91.

Razak KA, Song WC, Ng CY. Properties of Ce-doped Bi0. 5Na0. 5TiO3 synthesized using the soft combustion method. Procedia Chem. 2016;19:816-21.

Zhao ZH, Ge RF, Dai Y. Large electro-strain signal of the BNT-BT-KNN lead-free piezoelectric ceramics with CuO doping. J Adv Dielectrics. 2019;9(3):1950022.

Selvadurai AP, Pazhnivelu V, Vasanth BK, Jagadeeshwaran C, Murugaraj R. Investigation of structural and optical spectroscopy of 5% Pr doped (Bi0.5Na0.5) TiO3 ferroelectric ceramics: site depended study. J Mater Sci Mater Electron. 2015;26:7655-65.

Su Lee D, Jong Jeong S, Soo Kim M, Hyuk Koh J. Electric field induced polarization and strain of Bi-based ceramic composites. J Appl Phys. 2012;112:124109.

Huitema L, Cernea M, Crunteanu A, Trupina L, Nedelcu L, Banciu MG, et al. Microwave dielectric properties of BNT-BT0. 08 thin films prepared by sol-gel technique. J Appl Phys. 2016;119:144103.

Verma R, Rout SK. Frequency-dependent ferro-antiferro phase transition and internal bias field influenced piezoelectric response of donor and acceptor doped bismuth sodium titanate ceramics. J Appl Phy. 2019;126(9):094103.

Suchanicz J, Jankowska-Sumara I, Kruzina TV. Raman and infrared spectroscopy of Na0.5Bi0.5TiO3-BaTiO3 ceramics. J Electroceramics. 2011;27(2):45-50.

Hung NT, Bac LH, Hoang NT, Vinh PV, Trung NN, Dung DD. Structural, optical, and magnetic properties of SrFeO3-d-modified Bi0.5Na0.5TiO3 materials. Phys B Condens Matter. 2018;531:75-8.

Cho JH, Jeong YH, Nam JH, Yun JS, Park YJ. Phase transition and piezoelectric properties of lead-free (Bi1/2Na1/2) TiO3-BaTiO3 ceramics. Ceram Int. 2014;40(6):8419-25.

Jan SU, Zeb A, Milne SJ. Electrical properties of Ca-modified Na0.5Bi0.5TiO3-BaTiO3 ceramics. Ceram Int. 2014;40(10):15439-45.

Parija B, Badapanda T, Rout SK, Cavalcante LS, Panigrahi S, Longo E, et al. Morphotropic phase boundary and electrical properties of 1-x [Bi0.5Na0.5] TiO3-xBa [Zr0.25Ti0.75]O3 lead-free piezoelectric ceramics. Ceram Int. 2013;39(5):4877-86.

Lin D, Kwok KW. Structure and piezoelectric properties of new (Bi0.5Na0.5)1-x-y Bax(Yb0.5Na0.5)yTiO3 lead-free ceramics. J Mater Sci Mater Electron. 2010;21(11):1119-24.

Li D, Shen ZY, Li Z, Wang X, Luo WQ, Song F, et al. Structural evolution, dielectric and ferroelectric properties of (1-x) Bi0.5Na0.5TiO3-xBa0.3Sr0.7TiO3 ceramics. J Mater Sci Mater Electron. 2019;30(6):5917-22.

Chen X, He F, Wang Y, Liang F, Zhou H. Significant effects of powder preparation processes on the physical properties of Bi0.5Na0.5TiO3-0.06BaTiO3 ceramic. J Mater Sci Mater Electron. 2014;25(12):5309-15.

Guo Y, Xiao P, Luo L, Jiang N, Lei F, Zheng Q, et al. Structure, ferroelectric and piezoelectric properties of Bi0.5(Na0.8K0.2)0.5TiO3 modified BiFeO3-BaTiO3 lead-free piezoelectric ceramics. J Mater Sci Mater Electron. 2014;25(9):3753-61.

Barick BK, Choudhary RN, Pradhan DK. Dielectric and impedance spectroscopy of zirconium modified (Na0.5Bi0.5)TiO3 ceramics. Ceram Int 2013;39(5):5695-704.

Behara S, Ghatti L, Kanthamani S, Dumpala M, Thomas T. Structural, optical, and Raman studies of Gd doped sodium bismuth titanate. Ceram Int. 2018;44(11):12118-24.

Ruth DEJ, Muneeswaran M, Giridharan NV, Sundarakannan B. Structural and electrical properties of bismuth magnesium titanate substituted lead-free sodium bismuth titanate ceramics. J Mater Sci Mater Electron. 2016; 27(7):7018-23.

Hiruma Y, Nagata H, Takenaka T. Thermal depoling process and piezoelectric properties of bismuth sodium titanate ceramics. J Appl Phys. 2009;105(8):084112.

Hajra S, Sahoo S, De M, Rout PK, Tewari HS, Choudhary RNP. Structural and electrical characteristics of barium modified bismuth-sodium titanate (Bi0.49Na0.49Ba0.02)TiO3. J Mater Sci Mater Electron. 2017;29(2):1463-72.

Wang J, Zhou C, Li Q, Zeng W, Xu J, Chen G, et al. Dual relaxation behaviors and large electrostrictive properties of Bi0.5Na0.5TiO3-Sr0.85Bi0.1TiO3 ceramics. J Mater Sci. 2018;53(6):8844-54.

Du H, Luo F, Qu S, Pei Z, Zhu D, Zhou W. Phase structure, microstructure, and electrical properties of bismuth modified potassium-sodium niobium lead-free ceramics. J Appl Phys. 2007;102(5):054102.

Babu MVG, Kader SA, Muneeswaran M, Giridharan NV, Padiyan DP, Sundarakannan B. Enhanced piezoelectric constant and remnant polarisation in K-compensated sodium potassium bismuth titanate. Mater Lett. 2015;146:81-3.

Hiruma Y, Yoshii K, Nagata H, Takenaka T. Investigation of phase transition temperatures on (Bi1/2Na1/2)TiO3-(Bi1/2K1/2) TiO3 and (Bi1/2Na1/2) TiO3-BaTiO3 lead-free piezoelectric ceramics by electrical measurements. Ferroelectrics. 2007;346(1):114-9.

Li S, Liu J, Guo T, Dong W, Bi K, Luo Y. Piezoelectricity and flexoelectricity of sodium bismuth titanate-based ceramics. Ceram Int. 2020;46:2049-54.

Sahoo S, Hajra S, De M, Choudhary RN. Resistive, capacitive and conducting properties of Bi0.5Na0.5TiO3-BaTiO3 solid solution. Ceram Int. 2018;44(5):4719-26.

Yang M, Wang C, Peng Z, Fu X. Doping effect of Ta5+ions on microstructure and electrical properties of BaTiO3-(Bi0.5Na0.5)TiO3 ceramics with positive temperature coefficient of resistivity. J Mater Sci Mater Electron. 2017;28(14):10589-95.

Wang J, Zhang C, Wu F, Lin W, He X, Liu D, et al. Intrinsic and extrinsic electric response in Bi0.5Na0.5TiO3-BaTiO3 lead-free piezoceramics. Ferroelectrics. 2019;547(1):156-63.

Cernea M, Trupina L, Dragoi C, Galca AC, Trinca L. Structural, optical, and electric properties of BNT-BT0.08 thin films processed by sol-gel technique. J Mater Sci. 2012;47(19):6966-71.

Bajpai PK, Singh KN, Tamrakar P. Relaxor behavior and dielectric relaxation in lead-free solid solutions of (1-x) (Bi0.5Na0.5TiO3)-x(SrNb2O6). J Electron Mater. 2016;45:928-39.

Anem S, Rao KS, Rao KH. Investigation of lanthanum substitution in lead-free BNBT ceramics for transducer applications. Ceram Int. 2016;42(14):15319-26.

Sumang R, Kornphom C, Bongkarn T. Synthesis and electrical properties of BNT-BKT-KNN lead free piezoelectric solid solution prepared via the combustion technique. Ferroelectrics. 2017;518(1):11-22.

Lu YQ, Li YX. A review on lead-free piezoelectric ceramics studies in China. J Adv Dielectrics. 2011;1(03):269-88.

Sumang R, Thongmee N, Ketwong N, Sodnamorn P, Bongkarn T. Phase transition and electrical properties of [(0.935-x)BNT-0.065BT-xBZT] lead-free piezoelectric ceramics. Ferroelectrics. 2019;552(1):148-58.

Moosavi A, Bahrevar MA, Aghaei AR, Castro A, Ramos P, Alguero M, et al. Effects of nano-sized BiFeO3 addition on the properties of high piezoelectric response (1-x)Bi0.5Na0.5TiO3-Bi0.5K0.5TiO3 ceramics. J Mater Sci. 2015;50(5):2093-102.

Zhou X, Yuan X, Yan Z, Xue G, Luo H, Zhang D. High piezoelectric response and excellent fatigue resistance in Rb-substituted BNT-BKT-BT ceramics. J Mater Sci. 2020;55(8):7634-44.

Trelcat JF, Courtois C, Rguiti M, Leriche A, Duvigneaud PH, Segato T. Morphotropic phase boundary in the BNT-BT-BKT system. Ceram Int. 2012;38(4):2823-7.

Xiao M, Sun H, Wei Y, Li L, Zhang P. Microstructure and dielectric properties of BaTiO3 -(Bi0.5Na0.5)TiO3-NiNb2O6 ceramics. J Mater Sci Mater Electron. 2018;29(6):17689-94.

Mohanty SK, Datta DP, Behera B, Mohanty HS, Pati B, Das PR. Synthesis and dielectric spectroscopic study of lead-free ferroelectric ceramic K0.5Bi0.5TiO3-NaNbO3. J Mater Sci Mater Electron. 2020;31(4):3245-55.

Kang W, Zheng Z, Li Y, Zhao R. Enhanced dielectric and piezoelectric performance of sol-gel derived (1-x)Bi0.5 (Na0.78K0.22)0.5TiO3-xBaTiO3 ceramics. Ceram Int. 2019;45(17):23078-83.

Halim NA, Velayutham TS, Majid WA. Pyroelectric, ferroelectric, piezoelectric and dielectric properties of Na0.5Bi0.5TiO3 ceramic prepared by sol-gel method. Ceram Int. 2016;42(14):15664-70.

Jaiban P, Jiansirisomboon S, Watcharapasorn A, Yimnirun R, Guo R, Bhalla AS. High-and low-field dielectric responses and ferroelectric properties of (Bi0.5Na0.5) Zr1-xTixO3 ceramics. Ceram Int. 2013;39:S81-5.

Hong CH, Kim HP, Choi BY, Han HS, Son JS, Ahn CW, et al. Lead-free piezoceramics-where to move on?. J Materiomics. 2016;2(1):1-24.

Zhang X, Liu Y, Yu Z, Lyu Y, Lyu C. Phase transition and huge field-induced strain of BaZrO3 modified (Bi0.5Na0.5)0.94Ba0.06TiO3 ceramics. J Mater Sci Mater Electron. 2017;28:14664-71.

Cheng R, Zhu L, Zhu Y, Xu Z, Chu R, Li H, et al. Giant piezoelectricity and ultrahigh strain response in bismuth sodium titanate lead-free ceramics. Mater Lett. 2016;165:143-6.

Taghaddos E, Ma T, Zhong H, Zhou Q, Wan MX, Safari A. Fabrication and characterization of single-aperture 3.5-MHz BNT-based ultrasonic transducer for therapeutic application. IEEE Trans Ultrason Ferroelectr Freq Control. 2018;65(4):582-8.

Taghaddos E, Hejazi M, Safari A. Lead-free piezoelectric materials and ultrasonic transducers for medical imaging. J Adv Dielectrics. 2015;5(2):1530002.

Cernea M, Vasile BS, Ciuchi IV, Surdu VA, Bartha C, Iuga A, et al. Synthesis and characterization of novel ferrite-piezoelectric multiferroic core-shell-type structure. J Mater Sci. 2018;53(13):9650-61.

Jaita P, Manotham S, Butnoi P, Sanjoom R, Arkornsakul P, Sweatman DR, et al. The mechanical and electrical properties of modified-BNKT lead-free ceramics. Integrated Ferroelectrics Int J. 2018;187(1):147-55.

Kantha P, Pisitpipathsin N. Effect of KNbO3 addition on diffuse phase transition and dielectric properties of Bi0.5Na0.5TiO3 ceramics. Integrated Ferroelectrics Int J. 2018;187(1):129-37.

Fernandez-Benavides DA, Gutierrez-Perez AI, Benitez-Castro AM, Ayala-Ayala MT, Moreno-Murguia B, Munoz-Saldana J. Comparative study of ferroelectric and piezoelectric properties of BNT-BKT-BT ceramics near the phase transition zone. Materials. 2018;11(3):361.

Jeon YH, Patterson EA, Cann DP, Gibbons BJ. Dielectric and ferroelectric properties of (Bi0.5Na0.5) TiO3-(Bi0.5K0.5) TiO3-BaTiO3 thin films deposited via chemical solution deposition. Mater Lett. 2013;106:63-6.

Christensen M, Einarsrud MA, Grande T. Fabrication of lead-free Bi0.5Na0.5TiO3 thin films by aqueous chemical solution deposition. Materials. 2017;10(3):213.

Li J, Chen G, Lin X, Huang S, Cheng X. Enhanced energy density in poly(vinylidene fluoride) nanocomposites with dopamine-modified BNT nanoparticles. J Mater Sci. 2020;55(6):2503-15.

Jeong CK. Toward bioimplantable and biocompatible flexible energy harvesters using piezoelectric ceramic materials. MRS Communications. 2020;10(3)365-78.

Zhang Y, Kim H, Wang Q, Jo W, Kingon A, Kim S, et al. Progress in lead-free piezoelectric nanofiller materials and related composite nanogenerator devices. Nanoscale Adv. 2020;2(8):3131-49.

Nanda D, Kumar P, Samanta B, Sahu R, Singh A. Structural, dielectric, ferroelectric and magnetic properties of (BNT-BT)-NCZF composites synthesized by a microwave-assisted solid-state reaction route. J Electron Mater. 2019;48(8):5039-47.

Yao M, Pu Y, Zhang L, Chen M. Enhanced energy storage properties of (1-x) Bi0.5Na0.5TiO3-xBa0.85Ca0.15Ti0.9Zr0.1O3 ceramics. Mater Lett. 2016;174:110-3.

Pu Y, Yao M, Liu H, Fromling T. Phase transition behavior, dielectric and ferroelectric properties of (1-x)(Bi0.5Na0.5)TiO3-xBa0.85Ca0.15Ti0.9Zr0.1O3 ceramics. J Eur Ceram Soc. 2016;36(10):2461-8.

Fan P, Zhang Y, Huang J, Hu W, Huang D, Liu Z, et al. Constrained sintering and electrical properties of BNT-BKT lead-free piezoceramic thick films. Ceram Int. 2016;42(2):2534-41.

Aoyagi R, Takeda H, Okamura S, Shiosaki T. Ferroelectric and piezoelectric properties of bismuth layered-structure ferroelectric (Sr, Na, Bi) Bi2Ta2O9 ceramics. Mater Sci Eng B. 2005;116(2):156-60.

Badapanda T, Sahoo S, Nayak P. Dielectric, ferroelectric and piezoelectric study of BNT-BT solid solutions around the MPB region. IOP Conf Mater Sci Eng. 2017;178(1):012032.

Smolensky GA. New ferroelectrics of complex composition. IV. Mater Sci. 1961;2:2651-4.