Fast boundary extraction of color image using negative divergence of a normal compressive vector field

Main Article Content

Samruan Wiangsamut
Nawapak Eua-Anant
Wutthichai Phornphatcharaphong

Abstract

Among low level gradient-based edge detection techniques, boundary extraction algorithms based on particle motion yield superior continuous edge map results. However, these methods sequentially tracing particle trajectories to obtain continuous edges can be slow in the case of images having a number of objects or spurious edges. In order to accelerate such an edge tracking process, this paper proposes the use of negative divergence of a normal compressive vector field to enable fast edge detection. By exploiting the compressive property and negative divergence of the normal compressive vector field, prominent edges can be rapidly detected in a raster scan manner. The remaining incomplete or broken boundaries are later fixed using the boundary extraction algorithm based on particle motion. Image segmentation performance of the proposed algorithm was evaluated using the BSDS500 benchmark dataset with the F-measures for ODS and OIS, with average precision and computation time used as performance measurements. Experimental results indicated that the proposed algorithm provided results comparable to those of the well-known low-level methods, while the average computation time was drastically reduced by a factor of 2 when compared to that of the original particle motion based method.

Article Details

How to Cite
Wiangsamut, S. ., Eua-Anant, N. ., & Phornphatcharaphong, W. . (2021). Fast boundary extraction of color image using negative divergence of a normal compressive vector field. Engineering and Applied Science Research, 49(2), 168–180. Retrieved from https://ph01.tci-thaijo.org/index.php/easr/article/view/245621
Section
ORIGINAL RESEARCH

References

Mutneja V. Methods of image edge detection: a review. J Electr Electron Syst. 2015;4(2):1000150.

Canny J. A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell. 1986;8(6):679-98.

Cour T, Benezit F, Shi J. Spectral segmentation with multiscale graph decomposition. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05); 2005 Jun 20-25; San Diego, USA. New York: IEEE; 2005. p. 1124-31.

Eua-Anant N, Upda L. Boundary extraction algorithm based on particle motion in a vector image field. Proceedings of International Conference on Image Processing; 1997 Oct 26-29; Santa Barbara, USA. New York: IEEE; 1997. p. 732-5.

Eua-Anant N, Udpa L. Boundary detection using simulation of particle motion in a vector image field. IEEE Trans Image Process. 1999;8(11):1560-71.

Yang F, Cohen LD, Bruckstein AM. A model for automatically tracing object boundaries. 2017 IEEE International Conference on Image Processing (ICIP); 2017 Sep 17-20; Beijing, China. New York: IEEE; 2017. p. 2692-6.

Lu C, Chi Z, Chen G, Feng D. Geometric analysis of particle motion in a vector image field. J Math Imag Vis. 2006;26(3):301-7.

Phornphatcharaphong W, Eua-Anant N. Edge-based color image segmentation using particle motion in a vector image field derived from local color distance images. J Imag. 2020;6(7):72.

Dollar P, Zhuowen T, Belongie S. Supervised learning of edges and object boundaries. 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06); 2006 Jun 17-22; New York, USA. New York: IEEE; 2006. p. 1964-71.

Xiaofeng R, Bo L. Discriminatively trained sparse code gradients for contour detection. Adv Neural Inform Process Syst. 2012;1:584-92.

Hallman S, Fowlkes CC. Oriented edge forests for boundary detection. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2015 Jun 7-12; Boston, USA. New York: IEEE; 2015. p. 1732-40.

Arbelaez P, Maire M, Fowlkes C, Malik J. Contour detection and hierarchical image segmentation. IEEE Trans Pattern Anal Mach Intell. 2011;33(5):898-916.

Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. IEEE Conf Comput Vis Pattern Recogn. 2015;1:3431-40.

Shen W, Wang X, Wang Y, Bai X, Zhang Z. Deep contour: a deep convolutional feature learned by positive-sharing loss for contour detection. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2015 Jun 7-12; Boston, USA. New York: IEEE; 2015. p. 3982-91.

Bertasius G, Shi J, Torresani L. Deep edge: a multi-scale bifurcated deep network for top-down contour detection. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2015 Jun 7-12; Boston, USA. New York: IEEE; 2015. p. 4380-9.

Xie S, Tu Z. Holistically-nested edge detection. 2015 IEEE International Conference on Computer Vision (ICCV); 2015 Dec 7-13; Santiago, Chile. New York: IEEE; 2015. p. 1395-403.

Wang Y, Zhao X, Li Y, Huang K. Deep crisp boundaries: from boundaries to higher-level tasks. IEEE Trans Image Process. 2019;28(3):1285-98.

Zou N, Xiang Z, Chen Y, Chen S, Qiao C. Boundary-aware CNN for semantic segmentation. IEEE Access. 2019;7:114520-8.

Lee HS, Kim K. Simultaneous traffic sign detection and boundary estimation using convolutional neural network. IEEE Trans Intell Transport Syst. 2018;19(5):1652-63.

Varghese R, Sharma S, Premalatha M. Transforming auto-encoder and decoder network for pediatric bone image segmentation using a state-of-the-art semantic segmentation network on bone radiographs. 2018 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS); 2018 Oct 21-24; Bangkok, Thailand. New York: IEEE; 2018. p. 251-6.

Kustner T, Muller S, Fischer M, Weiβ J, Nikolaou K, Bamberg F, et al. Semantic organ segmentation in 3D whole-body MR images. 2018 25th IEEE International Conference on Image Processing (ICIP); 2018 Oct 7-10; Athens, Greece. New York: IEEE; 2018. p. 3498-502.

Tran T, Kwon O, Kwon K, Lee S, Kang K. Blood cell images segmentation using deep learning semantic segmentation. 2018 IEEE International Conference on Electronics and Communication Engineering (ICECE); 2018 Dec 10-12; Xi'an, China. New York: IEEE; 2018. p. 13-6.

Nguyen N, Lee S. Robust boundary segmentation in medical images using a consecutive deep encoder-decoder network. IEEE Access. 2019;7:33795-808.

Turan S, Bilgin G. Semantic nuclei segmentation with deep learning on breast pathology images. 2019 Scientific Meeting on Electrical-Electronics & Biomedical Engineering and Computer Science (EBBT); 2019 Apr 24-26; Istanbul, Turkey. New York: IEEE; 2019. p. 1-4.

Pemasiri A, Ahmedt-Aristizabal D, Nguyen K, Sridharan S, Dionisio S, Fookes C. Semantic segmentation of hands in multimodal images: a region new-based CNN approach. 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019); 2019 Apr 8-11; Venice, Italy. New York: IEEE; 2019. p. 819-23.

Maire M, Arbelaez P, Fowlkes C, Malik J. Using contours to detect and localize junctions in natural images. 2008 IEEE Conference on Computer Vision and Pattern Recognition; 2008 June 23-28; Anchorage, USA. New York: IEEE; 2008. p. 1-8.

Berkeley.edu [Internet]. 2007 [updated 2007 June; cited 2021 Jan 9]. Available from: https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/bench/html/images.html.

Ren X. Multi-scale improves boundary detection in natural images. 10th European Conference on Computer Vision: Part III; 2008 Oct 12-18; Marseille, France. Berlin: Springer; 2008. p. 533-45.

Felzenszwalb PF, Huttenlocher DP. Efficient graph-based image segmentation. Int J Comput Vis. 2004;59:167-81.

Comaniciu D, Meer P. Mean shift: a robust approach toward feature space analysis. IEEE Trans Pattern Anal Mach Intell. 2002;24(5):603-19.

Jianbo S, Malik J. Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell. 2000;22(8):888-905.