Effect of active layer thickness on the performance of amorphous hydrogenated silicon solar cells

Main Article Content

Soni Prayogi
Yoyok Cahyono
Dadan Hamdani
Darminto

Abstract

Hydrogenated amorphous silicon (a-Si: H) materials have received a great deal of attention for their potential to make inexpensive solar cells. In this work, we report that the effect of adding active layers in the a-Si: H p-i-n to p-i1-i2-n solar cell structure greatly affects the increase in conversion efficiency. Solar cells a-Si: H p-i1-i2-n were grown using the Plasma Enhanced Chemical Vapor Deposition (PECVD) technique on Indium Tin Oxide (ITO) substrate. The ITO substrate used for transparency and conductivity properties are superior among other oxide materials. The a-Si: H p-i1-i2-n solar cells were characterized including optical properties, electrical properties, energy gap using Spectroscopic Ellipsometric (SE), surface morphology using Atomic Force Microscopy (AFM) and solar cell performance (I-V curve) measured using solar simulator. The structure of solar cells a-Si: H p-i1-i2-n functions to capture sunlight energy that is not captured by the first intrinsic layer and can then be captured by the second intrinsic layer. Our results show that there is a very good increase from 7.79% in the p-i1-i2-n sample to 8.49% in the p-i2-i1-n sample.

Article Details

How to Cite
Prayogi, S., Cahyono, Y. ., Hamdani, D. ., & Darminto. (2021). Effect of active layer thickness on the performance of amorphous hydrogenated silicon solar cells. Engineering and Applied Science Research, 49(2), 201–208. Retrieved from https://ph01.tci-thaijo.org/index.php/easr/article/view/243553
Section
ORIGINAL RESEARCH

References

Prayogi S, Cahyono Y, Iqballudin I, Stchakovsky M, Darminto D. The effect of adding an active layer to the structure of a-Si:H solar cells on the efficiency using RF-PECVD. J Mater Sci Mater Electron. 2021;32(6):7609-18.

Fritzsche H. A new perspective on an old problem: the Staebler-Wronski effect. MRS Online Proc Libr. 2009;1245:1401.

Wagner D, Irsigler P. On the annealing behaviour of the Staebler-Wronski effect ina-Si:H. Appl Phys A Solid Surface. 1984;35(1):9-12.

Watts C, Aspitarte L, Lin Y, Li W, Elzein R, Addou R, et al. Light soaking in metal halide perovskites studied via steady-state microwave conductivity. Comm Phys. 2009;3(1):73-882.

Sadatgol M, Bihari N, Pearce JM, Guney DO. Scalable honeycomb top contact to increase the light absorption and reduce the series resistance of thin film solar cells. Opt Mater Express. 2014;9(1):256-68.

Dehghanifard Z, Ahmadi AR, Ganjovi AR. Space-time coupled finite element simulation of PECVD reactor. Int J Appl Comput Sci Math. 2017;2(3):303-13.

Droes SR, Kodas TT, Hampden-Smith MJ. Plasma-enhanced chemical vapor deposition (PECVD). In: Weimer AW, editor. Carbide, Nitride and Boride Materials Synthesis and Processing. Dordrecht: Springer; 2011. p. 579-603.

Moiseev T, Chrastina D, Isella G. Plasma composition by mass spectrometry in a Ar-SiH4-H2 LEPECVD process during nc-Si deposition. Plasma Chem Plasma Process. 2017;31(1):157-74.

Pham DP, Kim S, Park J. Reduction in photocurrent loss and improvement in performance of single junction solar cell due to multistep grading of hydrogenated amorphous silicon germanium active layer. Silicon. 2011;10:759-67.

Kabir MI, Shahahmadi SA, Lim V, Zaidi S, Sopian K, Amin N. Amorphous silicon single-junction thin-film solar cell exceeding 10% efficiency by design optimization. Int J Photoenerg. 2012;2012:460919.

Parashar D, Krishna VSG, Moger SN, Keshav R, Mahesha MG. Thickness optimization of ZnO/CdS/CdTe solar cell by numerical simulation. Trans Electr Electron Mater. 2019;21:587-93.

Massiot I, Cattoni A, Collin S. Progress and prospects for ultrathin solar cells. Nat Energ. 2018;5(12):959-72.

Prompan P, Wongkhan K, Jitchati R. Co-sensitized ruthenium(II) for dye-sensitized solar cells (DSSCs). KKU Eng J. 2006;43(S1):133-6.

Wongcharee K, Udomman T, Meeyoo V, Suttakat K, Sangphookhei T. Preparation of platinum-free tubular dye-sensitized solar cells by electrophoretic deposition. KKU Eng J. 2016;43(4):178-83.

Hussain I, Tran HP, Jaksik J, Moore J, Islam N, Uddin M. Functional materials, device architecture, and flexibility of perovskite solar cell. Emergent Mater. 2015;1:133-54.

Prayogi S, Ayunis, Kresna, Cahyono Y, Akidah, Darminto D. Analysis of thin layer optical properties of a-Si:H P-type doping CH4 and P-Type without CH4 is deposited PECVD systems. J Phys Conf Ser. 2017;853(1):012032.

Muhammad MH, Hameed MFO, Obayya SS. Broadband absorption enhancement in periodic structure plasmonic solar cell. Opt Quant Electron. 2007;47(6):1487-94.

Turapra P, Kaewrawang A, Tonmitra K. Study of mirror uses on electricity generation of solar cell. KKU Eng J. 2016;43(S1): 141-3.

Prayogi S, Baqiya M, Cahyono Y, Darminto D. Optical transmission of P-Type a-Si:H thin film deposited by PECVD on ITO-coated glass. Mater Sci Forum. 2019;996:72-6.

Frey H. Chemical vapor deposition (CVD). In: Frey H, Khan HR, editors. Handbook of thin-film technology. Berlin: Springer; 2002. p. 225-52.

Cahyono Y, Yahya E, Zainuri M, Pratapa S, Darminto D. Quantum confinement in an intrinsic a-Si:H thin film deposited on soda lime glass substrate using PECVD. Trans Electr Electron Mater. 2017;19(1):69-73.

Franta D, Necas D, Zajickova L, Ohlidal I, Stuchlik J. Advanced modeling for optical characterization of amorphous hydrogenated silicon films. Thin Solid Films. 2018;541:12-6.

Hilfiker JN. 5-In situ spectroscopic ellipsometry (SE) for characterization of thin film growth. In: Koster G, Rijnders G, editors. In Situ Characterization of Thin Film Growth. Cambridge: Woodhead Publishing; 2011. p. 99-151.

Oates TWH, Wormeester H, Arwin H. Characterization of plasmonic effects in thin films and metamaterials using spectroscopic ellipsometry. Progr Surf Sci. 2017;86(11-12):328-76.

Stradins P, Teplin CW, Young DL, Yan Y, Branz HM, Wang Q. Crystallization of thin-film Si monitored in real time by in-situ spectroscopic techniques. J Mater Sci Mater Electron. 2016;18:309-13.

Ahmad G, Das G, Roy JN. Performance and stability improvement of single junction a-Si:H solar cell by interface engineering. J Mater Sci Mater Electron. 2019;30(13):12406-15.

Seba HY, Hadjersi T, Zebbar N, Brighet A, Berouaken M, Manseri A, et al. Alternating current impedance spectroscopic investigation of an a-Si:H/c-Si heterojunction with porous silicon multilayers. Thin Solid Films. 2011;699:137891.

Kumar Saha J, Ohse N, Hamada K, Matsui H, Kobayashi T, Jia H, et al. Fast deposition of microcrystalline Si films from SiH2Cl2 using a high-density microwave plasma source for Si thin-film solar cells. Sol Energ Mater Sol Cell. 2017;94(3):524-30.

Kanneboina V, Madaka R, Agarwal P. Spectroscopic ellipsometry studies on microstructure evolution of a-Si:H to nc-Si:H films by H2 plasma exposure. Mater Today Comm. 2012;15:18-29.

Chakraborty M, Banerjee A, Das D. Spectroscopic studies on nanocrystalline silicon thin films prepared from H2-diluted SiH4-plasma in inductively coupled low pressure RF PECVD. Phys E Low-dimensional Syst Nanostruct. 2017;61:95-100.

Abadias G, Chason E, Keckes J, Sebastiani M, Thompson GB, Barthel E, et al. Review article: stress in thin films and coatings: current status, challenges, and prospects. J Vac Sci Technal. 2019;36(2):020801.

Shao S, Loi MA. The role of the interfaces in perovskite solar cells. Adv Mater Interfac. 2014;7(1):1901469.

van Dyk EE, Meyer EL. Analysis of the effect of parasitic resistances on the performance of photovoltaic modules. Renew Energ. 2016;29(3):333-44.

Kind R, van Swaaij RV, Rubinelli FA, Solntsev S, Zeman M. Thermal ideality factor of hydrogenated amorphous silicon p-i-n solar cells. J Appl Phys. 2009;110:104512.

Kosyachenko LA. Possibilities to decrease the absorber thickness reducing optical and recombination losses in CdS/CdTe solar cells. Mater Renew Sustain Energ. 2018;2:14-55.