Elastic and ultrasonic properties of fermium monopnictides

Main Article Content

Jyoti Bala
Devraj Singh

Abstract

Determinations of higher order elastic constants, thermal properties, mechanical properties and ultrasonic behavior have been done for fermium monopnictides. Initially, the lattice and non-linearity parameters were used to compute the higher order elastic constants at temperatures of 0K, 100K, 200K and 300K by means of the Born potential mode. Variation of Cauchy’s relations has been found at higher temperature due to weak atomic interactions. The second order elastic constants (SOECs) were used to estimate mechanical parameters such as the Young’s modulus, bulk modulus, Pugh’s ratio, shear modulus, Zener’s anisotropy factor, hardness, and Poisson ratio. On the basis of the values of these parameters, we found a brittle nature of fermium monopnictides. Furthermore, the SOECs were applied to compute the wave velocities for shear and longitudinal modes of propagation along <100>, <110> and <111> crystallographic orientations. Properties such as the lattice thermal conductivity, acoustic coupling constant, thermal relaxation time and attenuation of ultrasonic waves due to thermo-elastic and phonon-phonon interaction mechanisms have been calculated at room temperature. The results of present investigation have been analysed with available findings on other rare-earth materials.

Article Details

How to Cite
Bala, J., & Singh, D. (2020). Elastic and ultrasonic properties of fermium monopnictides. Engineering and Applied Science Research, 47(2), 182–189. Retrieved from https://ph01.tci-thaijo.org/index.php/easr/article/view/216247
Section
ORIGINAL RESEARCH

References

Kaatze U. Non-critical fluctuations of liquids: Cinderella of ultrasonic spectroscopy?. Int J Thermophys. 2014;35:1976-89.

Tripathi S, Agarwal R, Vashisth R, Singh D. Deflection analysis of capacitive micromachined ultrasonic transducer with InP nanowires. 7th International Conference on Signal Processing and Integrated Networks (SPIN); 2020 Feb 27-28; Noida, India. USA: IEEE; 2020. p. 355-8.

Vargaftik NB, Kozhevnikov VF, Gordeenko AM, Arnold DI, Naurzakov SP. Experimental study of the ultrasonic velocity in liquid cesium at high temperatures and pressures. Int J Thermophys. 1986;7:821-8.

Gerward L, Olsen JS, Benedict U, Luo H, Itié JP, Vogt O. Bulk moduli and high-pressure phases of ThX compounds: I. the thorium monopnictides. High Temp High Press. 1988;20:545-52.

Gerward L, Staun Olsen J, Benedict U, Dabos S, Vogt O. Bulk moduli and high-pressure phases of the uranium rocksalt structure compounds-I. The monochalcogenides. High Pres Res. 1989;1(4):235-51.

Olsen SJ, Gerward L, Benedict U, Dabos S, Vogt. O. Bulk moduli and high-pressure phases of the uranium rocksalt structure compounds: II. the monopnictides. High Pres Res. 1989;1(4):253-66.

Dabos S, Dufour C, Benedict U, Spirlet JC, Pagès M. High-pressure x-ray diffraction on neptunium compounds: recent results for NpAs. Physica B+C. 1986;144(1):79-83.

Dabos-Seignon S, Benedict U, Heathman S, Spirlet JC, Pages M. Phase transformation of AnX compounds under high pressure (An ≡ Np, Pu; X ≡ Sb, Te).J Less Common Met.1990;160(1):35-52.

Gensini M, Gering E, Heathman S, Benedict U, Spirlet JC. High-pressure phases of plutonium monoselenide studied by X-ray diffraction. High Pres Res. 1990;2(5-6):347-59.

Amine Monir ME, Ullah H, Baltach H, Mouchaal Y. First-principles investigations on the structural, elastic, phase stability and electronic properties of the binary monopnictide compounds based on the fermium FmX (X = P, As, and Sb). Comput Condens Matter. 2017;13:131-8.

Bahnes A, Amine Monir ME, Baltach H, Mouchaal Y, Kenane A, Bekhti-Siad A. Half-metallic ferromagnetism in V-doped FmP binary monopnictide compounds: an ab initio calculations. J Supercond Nov Magn. 2019;32(3):705-14.

Murnaghan FD. Finite deformation of an elastic solid. New York: Dover publications; 1967.

Pham HH, Cagin T. Lattice dynamics and second and third order elastic constants of iron at elevated pressure. CMC-Comput Mater Con. 2010;16(2):175-94.

Wallace DC. Thermodynamics of crystlas. New York: Wiley; 1972.

Mehl MJ, Osburn JE, Papacontantopoules DA, Klein BM. Sturctural properties of orders liquid high melting temperature intermetallic alloys from 1st principles total energy calculations. Phy Rev B. 1990;41:10311-23.

Brugger K. Thermodynamic definition of higher order elastic coefficients. Phys Rev. 1964;133:A1611-2.

Born M, Mayer JE. Zur Gittertheorie der Lonenk- ristalle. Z Phys. 1932;75:1-18.

Mori S, Hiki Y. Calculation of the third- and fourth-order elastic constants of alkali halide crystals. J Phys Soc Jpn. 1978;45:1449-56.

Leibfried G, Hahn H. Zur Temperaturabhängigkeit der elastischen Konstanten von Alkalihalogenidkristallen. Z Phys. 1958;150:497-525.

Leibfried G, Ludwig W. Theory of anharmonic effect in crystal. Solid State Phys. 1961;12:275-444.

Ghate PB. Third-order elastic constants of alkali halide crystals. Phys Rev. 1965;139:A1666-74.

Bhalla V, Singh D, Jain SK. Mechanical and thermophysical properties of cerium monopnictides. Int J Thermophys. 2016;37(3):1-17.

Singh D, Tripathy C, Paikaray R, Mathur A, Wadhwa S. Behaviour of ultrasonic properties on SnAs, InTe and PbSb. Eng Appl Sci Res. 2019;46(2):98-105.

Singh D, Bhalla V, Bala J, Wadhwa S. Ultrasonic investigations on polonides of Ba, Ca, and Pb. Z Naturforsch A. 2017;72(11):977-83.

Bhalla V, Kumar R, Tripathy C, Singh D. Mechanical and thermal properties of praseodymium monopnictides: an ultrasonic study. Int J Mod Phys B. 2013;27(22):1-28.

Bains JA, Breazeale MA. Third order elastic constants and Gruinesium paramters of silicon and germanium between 300 and 30K. Phys Rev B.1976;13:3623.

Thurston RN, Brugger K. Third-order elastic constants and the velocity of small amplitude elastic waves in homogeneously stressed media. Phys Rev. 1964; 133:A1604-10.

Tripathi S, Agarwal R, Singh D. Nonlinear elastic, ultrasonic and thermophysical properties of lead telluride. Int J Thermophys. 2019;40:78.

Cahill DG, Watson SK, Pohl RO. Lower limit to the thermal conductivity of disordered crystals. Phys Rev B. 1992;46:6131-40.

Mason WP. Physical Acoustics. Vol. III B. New York: Academic Press; 1965.

Gray DE. American Institute of Physics Handbook. New York: McGraw Hill; 1981.

Varshney D, Jain S, Shreya S, Khenata R. High-pressure and temperature-induced structural, elastic and thermodynamically properties of strontium chalcogenides. J Theor Appl Phys. 2016;10:163-93.

Tripathy C, Singh D, Paikaray R. Behaviour of elastic and ultrasonic properties of curium monopnictides. Can J Phys. 2018;96(5):513-8.

Singh D, Kumar A, Bhalla V, Thakur RK. Mechanical and thermophysical properties of actinide monocarbides. Mod Phys Lett B. 2018;32(21):1-9.

Pugh SF. XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos Mag. 1954;45:823-43.

Kor SK, Pandey G, Singh D. Ultrasonic attenuation in semi-metallie GdX single crystals (X= P, As, Sb and Bi) in the temperature range 10 to 300K. Indian J Pure Appl Phys. 2001;39:510-3.

Singh D, Pandey DK, Singh DK, Yadav RR. Propagation of ultrasonic waves in neptunium monochalcogenides. Appl Acoust. 2011;72(10):737-41.

Singh D, Tripathi S, Pandey DK, Gupta AK, Singh DK, Kumar J. Ultrasonic wave propagation in semi-metallic single crystals. Mod Phys Lett B. 2011;25(31):2377-90.

Pandey DK, Singh D, Bhalla V, Tripathi S. Temperature dependent elastic and ultrasonic properties of ytterbium monopnictides. Ind. J. Pure Appl. Phys. 2014;52:330-6.

Bhalla V, Singh D, Jain SK, Kumar R. Ultrasonic attenuation in rare-earth monoarsenides. Pramana- J Phys. 2016;86:1355-67.

Bala J, Singh D, Pandey DK, Yadav CP. Mechanical and thermophysical properties of ScM (M: Ru, Rh, Pd, Ag) intermetallics. Int J Thermophys. 2020;41:1-13.